mirror of
https://github.com/graphdeco-inria/gaussian-splatting
synced 2025-06-26 18:18:11 +00:00
Merge 25b71e16d9
into 8a70a8cd6f
This commit is contained in:
commit
558f7b77c2
28
train.py
28
train.py
@ -11,8 +11,9 @@
|
||||
|
||||
import os
|
||||
import torch
|
||||
import time
|
||||
from random import randint
|
||||
from utils.loss_utils import l1_loss, ssim
|
||||
from utils.loss_utils import l1_loss, ssim, ssim_optimized, create_window
|
||||
from gaussian_renderer import render, network_gui
|
||||
import sys
|
||||
from scene import Scene, GaussianModel
|
||||
@ -29,8 +30,9 @@ except ImportError:
|
||||
TENSORBOARD_FOUND = False
|
||||
|
||||
def training(dataset, opt, pipe, testing_iterations, saving_iterations, checkpoint_iterations, checkpoint, debug_from):
|
||||
start_time=time.time()
|
||||
first_iter = 0
|
||||
tb_writer = prepare_output_and_logger(dataset)
|
||||
tb_writer = prepare_output_and_logger(dataset) # Tensorboard writer
|
||||
gaussians = GaussianModel(dataset.sh_degree)
|
||||
scene = Scene(dataset, gaussians)
|
||||
gaussians.training_setup(opt)
|
||||
@ -87,10 +89,18 @@ def training(dataset, opt, pipe, testing_iterations, saving_iterations, checkpoi
|
||||
image, viewspace_point_tensor, visibility_filter, radii = render_pkg["render"], render_pkg["viewspace_points"], render_pkg["visibility_filter"], render_pkg["radii"]
|
||||
|
||||
# Loss
|
||||
# gt_image = viewpoint_cam.original_image.cuda()
|
||||
# Ll1 = l1_loss(image, gt_image)
|
||||
# loss = (1.0 - opt.lambda_dssim) * Ll1 + opt.lambda_dssim * (1.0 - ssim(image, gt_image))
|
||||
# loss.backward()
|
||||
|
||||
|
||||
# ----------------modify-------------
|
||||
gt_image = viewpoint_cam.original_image.cuda()
|
||||
Ll1 = l1_loss(image, gt_image)
|
||||
loss = (1.0 - opt.lambda_dssim) * Ll1 + opt.lambda_dssim * (1.0 - ssim(image, gt_image))
|
||||
loss = (1.0 - opt.lambda_dssim) * Ll1 + opt.lambda_dssim * (1.0 - ssim_optimized(image, gt_image, window=window))
|
||||
loss.backward()
|
||||
#-------------------------------------
|
||||
|
||||
iter_end.record()
|
||||
|
||||
@ -131,13 +141,18 @@ def training(dataset, opt, pipe, testing_iterations, saving_iterations, checkpoi
|
||||
print("\n[ITER {}] Saving Checkpoint".format(iteration))
|
||||
torch.save((gaussians.capture(), iteration), scene.model_path + "/chkpnt" + str(iteration) + ".pth")
|
||||
|
||||
end_time = time.time()
|
||||
total_time = end_time - start_time
|
||||
print(f"\nTraining complete. Total training time: {total_time:.2f} seconds.")
|
||||
|
||||
|
||||
def prepare_output_and_logger(args):
|
||||
if not args.model_path:
|
||||
if os.getenv('OAR_JOB_ID'):
|
||||
unique_str=os.getenv('OAR_JOB_ID')
|
||||
else:
|
||||
unique_str = str(uuid.uuid4())
|
||||
args.model_path = os.path.join("./output/", unique_str[0:10])
|
||||
args.model_path = os.path.join("/mnt/data1/3dgs_modify_output/", unique_str[0:10])
|
||||
|
||||
# Set up output folder
|
||||
print("Output folder: {}".format(args.model_path))
|
||||
@ -191,6 +206,11 @@ def training_report(tb_writer, iteration, Ll1, loss, l1_loss, elapsed, testing_i
|
||||
torch.cuda.empty_cache()
|
||||
|
||||
if __name__ == "__main__":
|
||||
#----------------------create window------------------
|
||||
window_size=11
|
||||
channel=3
|
||||
window=create_window(window_size, channel)
|
||||
#--------------------------------
|
||||
# Set up command line argument parser
|
||||
parser = ArgumentParser(description="Training script parameters")
|
||||
lp = ModelParams(parser)
|
||||
|
@ -25,13 +25,14 @@ def gaussian(window_size, sigma):
|
||||
return gauss / gauss.sum()
|
||||
|
||||
def create_window(window_size, channel):
|
||||
"""Create a 2D Gaussian window."""
|
||||
_1D_window = gaussian(window_size, 1.5).unsqueeze(1)
|
||||
_2D_window = _1D_window.mm(_1D_window.t()).float().unsqueeze(0).unsqueeze(0)
|
||||
window = Variable(_2D_window.expand(channel, 1, window_size, window_size).contiguous())
|
||||
return window
|
||||
|
||||
def ssim(img1, img2, window_size=11, size_average=True):
|
||||
channel = img1.size(-3)
|
||||
channel = img1.size(-3) #channel=3
|
||||
window = create_window(window_size, channel)
|
||||
|
||||
if img1.is_cuda:
|
||||
@ -62,3 +63,12 @@ def _ssim(img1, img2, window, window_size, channel, size_average=True):
|
||||
else:
|
||||
return ssim_map.mean(1).mean(1).mean(1)
|
||||
|
||||
#-----------------modify------------------------------------
|
||||
def ssim_optimized(img1, img2, window=None, window_size=11, size_average=True):
|
||||
channel = img1.size(-3)
|
||||
if window is None:
|
||||
window = create_window(window_size, channel).to(img1.device).type_as(img1)
|
||||
if img1.is_cuda:
|
||||
window = window.cuda(img1.get_device())
|
||||
window = window.type_as(img1)
|
||||
return _ssim(img1, img2, window, window_size, channel, size_average)
|
||||
|
Loading…
Reference in New Issue
Block a user