This commit is contained in:
Khoa Nguyen-Tuan 2024-11-04 17:22:17 +08:00 committed by GitHub
commit 3dd08a6a17
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
2 changed files with 89 additions and 3 deletions

View File

@ -261,6 +261,10 @@ python metrics.py -m <path to pre-trained model>
#### --model_paths / -m
Space-separated list of model paths for which metrics should be computed.
#### --eval_dir_name / -e
Name of the folder contains render results at <model_paths> / <eval_dir_name>. (```test``` by default)
#### --run_iter
If set, read image iteratively to save VRAM but take more time.
</details>
<br>

View File

@ -20,6 +20,7 @@ import json
from tqdm import tqdm
from utils.image_utils import psnr
from argparse import ArgumentParser
import gc
def readImages(renders_dir, gt_dir):
renders = []
@ -33,7 +34,8 @@ def readImages(renders_dir, gt_dir):
image_names.append(fname)
return renders, gts, image_names
def evaluate(model_paths):
def evaluate(model_paths, eval_dir_name="test"):
full_dict = {}
per_view_dict = {}
@ -49,7 +51,7 @@ def evaluate(model_paths):
full_dict_polytopeonly[scene_dir] = {}
per_view_dict_polytopeonly[scene_dir] = {}
test_dir = Path(scene_dir) / "test"
test_dir = Path(scene_dir) / eval_dir_name
for method in os.listdir(test_dir):
print("Method:", method)
@ -92,6 +94,80 @@ def evaluate(model_paths):
except:
print("Unable to compute metrics for model", scene_dir)
def readImage(renders_dir, gt_dir, fname):
render = tf.to_tensor(Image.open(renders_dir / fname)).unsqueeze(0)[:, :3, :, :].cuda()
gt = tf.to_tensor(Image.open(gt_dir / fname)).unsqueeze(0)[:, :3, :, :].cuda()
return render, gt
def evaluate_iter(model_paths, eval_dir_name="test"):
full_dict = {}
per_view_dict = {}
full_dict_polytopeonly = {}
per_view_dict_polytopeonly = {}
print("")
for scene_dir in model_paths:
try:
print("Scene:", scene_dir)
full_dict[scene_dir] = {}
per_view_dict[scene_dir] = {}
full_dict_polytopeonly[scene_dir] = {}
per_view_dict_polytopeonly[scene_dir] = {}
test_dir = Path(scene_dir) / eval_dir_name
for method in os.listdir(test_dir):
print("Method:", method)
full_dict[scene_dir][method] = {}
per_view_dict[scene_dir][method] = {}
full_dict_polytopeonly[scene_dir][method] = {}
per_view_dict_polytopeonly[scene_dir][method] = {}
method_dir = test_dir / method
gt_dir = method_dir/ "gt"
renders_dir = method_dir / "renders"
image_names = os.listdir(renders_dir)
ssims = []
psnrs = []
lpipss = []
for fname in tqdm(image_names, desc="Metric evaluation progress"):
render, gt = readImage(renders_dir, gt_dir, fname)
ssims.append(ssim(render, gt))
psnrs.append(psnr(render, gt))
lpipss.append(lpips(render, gt, net_type='vgg'))
del render, gt
gc.collect()
torch.cuda.empty_cache()
print(" SSIM : {:>12.7f}".format(torch.tensor(ssims).mean(), ".5"))
print(" PSNR : {:>12.7f}".format(torch.tensor(psnrs).mean(), ".5"))
print(" LPIPS: {:>12.7f}".format(torch.tensor(lpipss).mean(), ".5"))
print("")
full_dict[scene_dir][method].update({"SSIM": torch.tensor(ssims).mean().item(),
"PSNR": torch.tensor(psnrs).mean().item(),
"LPIPS": torch.tensor(lpipss).mean().item()})
per_view_dict[scene_dir][method].update({"SSIM": {name: ssim for ssim, name in zip(torch.tensor(ssims).tolist(), image_names)},
"PSNR": {name: psnr for psnr, name in zip(torch.tensor(psnrs).tolist(), image_names)},
"LPIPS": {name: lp for lp, name in zip(torch.tensor(lpipss).tolist(), image_names)}})
with open(scene_dir + "/results.json", 'w') as fp:
json.dump(full_dict[scene_dir], fp, indent=True)
with open(scene_dir + "/per_view.json", 'w') as fp:
json.dump(per_view_dict[scene_dir], fp, indent=True)
except:
print("Unable to compute metrics for model", scene_dir)
if __name__ == "__main__":
device = torch.device("cuda:0")
torch.cuda.set_device(device)
@ -99,5 +175,11 @@ if __name__ == "__main__":
# Set up command line argument parser
parser = ArgumentParser(description="Training script parameters")
parser.add_argument('--model_paths', '-m', required=True, nargs="+", type=str, default=[])
parser.add_argument('--eval_dir_name', '-e', type=str, default="test", help="Name of the folder contains render results at <model_paths> / <eval_dir_name>")
parser.add_argument('--run_iter', action='store_true', default=False, help="Read image iteratively to save VRAM")
args = parser.parse_args()
evaluate(args.model_paths)
if args.run_iter:
evaluate_iter(args.model_paths, args.eval_dir_name)
else:
evaluate(args.model_paths, args.eval_dir_name)