mirror of
https://github.com/graphdeco-inria/gaussian-splatting
synced 2024-11-22 00:08:02 +00:00
Merge branch 'main' of https://github.com/graphdeco-inria/gaussian-splatting
This commit is contained in:
commit
35b89fca85
37
README.md
37
README.md
@ -71,8 +71,8 @@ The optimizer uses PyTorch and CUDA extensions in a Python environment to produc
|
||||
|
||||
### Software Requirements
|
||||
- Conda (recommended for easy setup)
|
||||
- C++ Compiler for PyTorch extensions (we *recommend* Visual Studio 2019 for Windows)
|
||||
- CUDA 11 SDK for PyTorch extensions (we used 11.8)
|
||||
- C++ Compiler for PyTorch extensions (we used Visual Studio 2019 for Windows)
|
||||
- CUDA SDK 11.7+ for PyTorch extensions (we used 11.8, **known issues with 11.6**)
|
||||
- C++ Compiler and CUDA SDK must be compatible
|
||||
|
||||
### Setup
|
||||
@ -269,8 +269,8 @@ We provide two interactive iewers for our method: remote and real-time. Our view
|
||||
- CUDA-ready GPU with Compute Capability 7.0+ (only for Real-Time Viewer)
|
||||
|
||||
### Software Requirements
|
||||
- C++ Compiler (we *recommend* Visual Studio 2019 for Windows)
|
||||
- CUDA 11 Developer SDK (we used 11.8)
|
||||
- Visual Studio or g++, **not Clang** (we used Visual Studio 2019 for Windows)
|
||||
- CUDA SDK 11 (we used 11.8)
|
||||
- CMake (recent version, we used 3.24)
|
||||
- 7zip (only on Windows)
|
||||
|
||||
@ -289,7 +289,7 @@ cmake --build build --target install --config RelWithDebInfo
|
||||
```
|
||||
You may specify a different configuration, e.g. ```Debug``` if you need more control during development.
|
||||
|
||||
#### Ubuntu
|
||||
#### Ubuntu 22.04
|
||||
You will need to install a few dependencies before running the project setup.
|
||||
```shell
|
||||
# Dependencies
|
||||
@ -300,6 +300,14 @@ cmake -Bbuild .
|
||||
cmake --build build --target install
|
||||
```
|
||||
|
||||
#### Ubuntu 20.04
|
||||
Backwards compatibility with Focal Fossa is not fully tested, but building SIBR should still work by first invoking
|
||||
```shell
|
||||
git checkout fossa_compatibility
|
||||
git submodule update --init
|
||||
```
|
||||
and then continuing with the steps for Ubuntu 22.04.
|
||||
|
||||
### Navigation in SIBR Viewers
|
||||
The SIBR interface provides several methods of navigating the scene. By default, you will be started with an FPS navigator, which you can control with ```W, A, S, D, Q, E``` for camera translation and ```I, K, J, L, U, O``` for rotation. Alternatively, you may want to use a Trackball-style navigator (select from the floating menu). You can also snap to a camera from the data set with the ```Snap to``` button or find the closest camera with ```Snap to closest```. The floating menues also allow you to change the navigation speed. You can use the ```Scaling Modifier``` to control the size of the displayed Gaussians, or show the initial point cloud.
|
||||
|
||||
@ -374,9 +382,24 @@ SIBR has many other functionalities, please see the [documentation](https://sibr
|
||||
</details>
|
||||
<br>
|
||||
|
||||
## Preprocessing your own Scenes
|
||||
## Processing your own Scenes
|
||||
|
||||
Our rasterization requires a SIMPLE_PINHOLE or PINHOLE camera model for COLMAP data. We provide a converter script ```convert.py```, to extract undistorted images and SfM information. Optionally, you can use ImageMagick to resize the undistorted images. This rescaling is similar to MipNeRF360, i.e., it creates images with 1/2, 1/4 and 1/8 the original resolution in corresponding folders. To use them, please first install a recent version of COLMAP (ideally CUDA-powered) and ImageMagick. Put the images you want to use in a directory ```<location>/input```.
|
||||
Our COLMAP loaders expect the following dataset structure in the source path location:
|
||||
|
||||
```
|
||||
<location>
|
||||
|---images
|
||||
| |---<image 0>
|
||||
| |---<image 1>
|
||||
| |---...
|
||||
|---sparse
|
||||
|---0
|
||||
|---cameras.bin
|
||||
|---images.bin
|
||||
|---points3D.bin
|
||||
```
|
||||
|
||||
For rasterization, the camera models must be either a SIMPLE_PINHOLE or PINHOLE camera. We provide a converter script ```convert.py```, to extract undistorted images and SfM information from input images. Optionally, you can use ImageMagick to resize the undistorted images. This rescaling is similar to MipNeRF360, i.e., it creates images with 1/2, 1/4 and 1/8 the original resolution in corresponding folders. To use them, please first install a recent version of COLMAP (ideally CUDA-powered) and ImageMagick. Put the images you want to use in a directory ```<location>/input```.
|
||||
```
|
||||
<location>
|
||||
|---input
|
||||
|
@ -72,7 +72,7 @@ class OptimizationParams(ParamGroup):
|
||||
self.position_lr_init = 0.00016
|
||||
self.position_lr_final = 0.0000016
|
||||
self.position_lr_delay_mult = 0.01
|
||||
self.posititon_lr_max_steps = 30_000
|
||||
self.position_lr_max_steps = 30_000
|
||||
self.feature_lr = 0.0025
|
||||
self.opacity_lr = 0.05
|
||||
self.scaling_lr = 0.001
|
||||
|
@ -126,7 +126,7 @@ class GaussianModel:
|
||||
self.xyz_scheduler_args = get_expon_lr_func(lr_init=training_args.position_lr_init*self.spatial_lr_scale,
|
||||
lr_final=training_args.position_lr_final*self.spatial_lr_scale,
|
||||
lr_delay_mult=training_args.position_lr_delay_mult,
|
||||
max_steps=training_args.posititon_lr_max_steps)
|
||||
max_steps=training_args.position_lr_max_steps)
|
||||
|
||||
def update_learning_rate(self, iteration):
|
||||
''' Learning rate scheduling per step '''
|
||||
|
@ -1 +1 @@
|
||||
Subproject commit c78d81f56cd5da3cf39f6201984570060128c1aa
|
||||
Subproject commit fc0cfe904a7870245437d9bfe17f819d9260281d
|
Loading…
Reference in New Issue
Block a user