Update train.py

Updated the main function, call the create_window() function for just once, since the window_size is fixed to 11 and the channel is fixed to 3 according to the source code. 
Updated the calculation of loss function, call the ssim_optimized(), instead of the original ssim().
This commit is contained in:
Lixing Xiao 2024-07-12 16:59:36 +08:00 committed by GitHub
parent b66e1ad13e
commit 25b71e16d9
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194

View File

@ -33,18 +33,18 @@ def training(dataset, opt, pipe, testing_iterations, saving_iterations, checkpoi
start_time=time.time()
first_iter = 0
tb_writer = prepare_output_and_logger(dataset) # Tensorboard writer
gaussians = GaussianModel(dataset.sh_degree) #高斯模型
scene = Scene(dataset, gaussians) #场景
gaussians.training_setup(opt) #训练设置
gaussians = GaussianModel(dataset.sh_degree)
scene = Scene(dataset, gaussians)
gaussians.training_setup(opt)
if checkpoint:
(model_params, first_iter) = torch.load(checkpoint)
gaussians.restore(model_params, opt)
bg_color = [1, 1, 1] if dataset.white_background else [0, 0, 0] #背景颜色
background = torch.tensor(bg_color, dtype=torch.float32, device="cuda") #背景颜色
bg_color = [1, 1, 1] if dataset.white_background else [0, 0, 0]
background = torch.tensor(bg_color, dtype=torch.float32, device="cuda")
iter_start = torch.cuda.Event(enable_timing = True) #开始时间
iter_end = torch.cuda.Event(enable_timing = True) #结束时间
iter_start = torch.cuda.Event(enable_timing = True)
iter_end = torch.cuda.Event(enable_timing = True)
viewpoint_stack = None
ema_loss_for_log = 0.0
@ -66,9 +66,9 @@ def training(dataset, opt, pipe, testing_iterations, saving_iterations, checkpoi
except Exception as e:
network_gui.conn = None
iter_start.record() #记录开始时间
iter_start.record()
gaussians.update_learning_rate(iteration) #更新学习率
gaussians.update_learning_rate(iteration)
# Every 1000 its we increase the levels of SH up to a maximum degree
if iteration % 1000 == 0:
@ -85,7 +85,7 @@ def training(dataset, opt, pipe, testing_iterations, saving_iterations, checkpoi
bg = torch.rand((3), device="cuda") if opt.random_background else background
render_pkg = render(viewpoint_cam, gaussians, pipe, bg) #渲染
render_pkg = render(viewpoint_cam, gaussians, pipe, bg)
image, viewspace_point_tensor, visibility_filter, radii = render_pkg["render"], render_pkg["viewspace_points"], render_pkg["visibility_filter"], render_pkg["radii"]
# Loss
@ -141,9 +141,9 @@ def training(dataset, opt, pipe, testing_iterations, saving_iterations, checkpoi
print("\n[ITER {}] Saving Checkpoint".format(iteration))
torch.save((gaussians.capture(), iteration), scene.model_path + "/chkpnt" + str(iteration) + ".pth")
end_time = time.time() # 记录训练结束时间
total_time = end_time - start_time # 计算总时间
print(f"\nTraining complete. Total training time: {total_time:.2f} seconds.") # 打印总时间
end_time = time.time()
total_time = end_time - start_time
print(f"\nTraining complete. Total training time: {total_time:.2f} seconds.")
def prepare_output_and_logger(args):