@Article{kerbl3Dgaussians,
- author = {Kerbl, Bernhard and Kopanas, Georgios and Leimk{\"u}hler, Thomas and Drettakis, George},
- title = {3D Gaussian Splatting for Real-Time Radiance Field Rendering},
- journal = {ACM Transactions on Graphics},
- number = {4},
- volume = {42},
- month = {July},
- year = {2023},
- url = {https://repo-sam.inria.fr/fungraph/3d-gaussian-splatting/}
+ @article{kheradmand20243d,
+ title={3D Gaussian Splatting as Markov Chain Monte Carlo},
+ author={Kheradmand, Shakiba and Rebain, Daniel and Sharma, Gopal and Sun, Weiwei and Tseng, Jeff and Isack, Hossam and Kar, Abhishek and Tagliasacchi, Andrea and Yi, Kwang Moo},
+ journal={arXiv preprint arXiv:2404.09591},
+ year={2024}
}
+ Novel view reconstructions for (right) our method + and (left) conventional 3D Gaussian Splatting with + random initializations. Our method, even with random initialization, + faithfully reconstructs the scene (e.g.. buildings at the back and + the ground texture) providing much higher quality renderings. +
++ While 3D Gaussian Splatting has recently become popular for neural + rendering, current methods rely on carefully engineered cloning and + splitting strategies for placing Gaussians, which can lead to + poor-quality renderings, and reliance on a good initialization. In + this work, we rethink the set of 3D Gaussians as a random sample + drawn from an underlying probability distribution describing the + physical representation of the scene---in other words, Markov Chain + Monte Carlo (MCMC) samples. Under this view, we show that the 3D + Gaussian updates can be converted as Stochastic Gradient Langevin + Dynamics (SGLD) update by simply introducing noise. We then rewrite + the densification and pruning strategies in 3D Gaussian Splatting as + simply a deterministic state transition of MCMC samples, removing + these heuristics from the framework. To do so, we revise the + `cloning' of Gaussians into a relocalization scheme that + approximately preserves sample probability. To encourage efficient + use of Gaussians, we introduce a regularizer that promotes the + removal of unused Gaussians. On various standard evaluation scenes, + we show that our method provides improved rendering quality, easy + control over the number of Gaussians, and robustness to + initialization. +
++ '10' sequence from OMMO dataset + | +|||
3DGS-Random | +3DGS | +||
+ + | +|||
Ours-Random | +Ours | +
+ 'Stump' sequence from the MipNeRF360 dataset (pay attention to the + details between the leaves) + | +|||
3DGS-Random | +3DGS | +||
+ + | +|||
Ours-Random | +Ours | +