Initial commit

This commit is contained in:
bkerbl
2023-07-04 10:00:48 +02:00
commit 15d64e6781
35 changed files with 3107 additions and 0 deletions

View File

@@ -0,0 +1,88 @@
import torch
import math
from diff_gaussian_rasterization import GaussianRasterizationSettings, GaussianRasterizer
from scene.gaussian_model import GaussianModel
from utils.sh_utils import eval_sh
def render(viewpoint_camera, pc : GaussianModel, pipe, bg_color : torch.Tensor, scaling_modifier = 1.0, override_color = None):
"""
Render the scene.
Background tensor (bg_color) must be on GPU!
"""
# Create zero tensor. We will use it to make pytorch return gradients of the 2D (screen-space) means
screenspace_points = torch.zeros_like(pc.get_xyz, dtype=pc.get_xyz.dtype, requires_grad=True, device="cuda") + 0
try:
screenspace_points.retain_grad()
except:
pass
# Set up rasterization configuration
tanfovx = math.tan(viewpoint_camera.FoVx * 0.5)
tanfovy = math.tan(viewpoint_camera.FoVy * 0.5)
raster_settings = GaussianRasterizationSettings(
image_height=int(viewpoint_camera.image_height),
image_width=int(viewpoint_camera.image_width),
tanfovx=tanfovx,
tanfovy=tanfovy,
bg=bg_color,
scale_modifier=scaling_modifier,
viewmatrix=viewpoint_camera.world_view_transform,
projmatrix=viewpoint_camera.full_proj_transform,
sh_degree=pc.active_sh_degree,
campos=viewpoint_camera.camera_center,
prefiltered=False
)
rasterizer = GaussianRasterizer(raster_settings=raster_settings)
means3D = pc.get_xyz
means2D = screenspace_points
opacity = pc.get_opacity
# If precomputed 3d covariance is provided, use it. If not, then it will be computed from
# scaling / rotation by the rasterizer.
scales = None
rotations = None
cov3D_precomp = None
if pipe.compute_cov3D_python:
cov3D_precomp = pc.get_covariance(scaling_modifier)
else:
scales = pc.get_scaling
rotations = pc.get_rotation
# If precomputed colors are provided, use them. Otherwise, if it is desired to precompute colors
# from SHs in Python, do it. If not, then SH -> RGB conversion will be done by rasterizer.
shs = None
colors_precomp = None
if colors_precomp is None:
if pipe.convert_SHs_python:
shs_view = pc.get_features.transpose(1, 2).view(-1, 3, (pc.max_sh_degree+1)**2)
dir_pp = (pc.get_xyz - viewpoint_camera.camera_center.repeat(pc.get_features.shape[0], 1))
dir_pp_normalized = dir_pp/dir_pp.norm(dim=1, keepdim=True)
sh2rgb = eval_sh(pc.active_sh_degree, shs_view, dir_pp_normalized)
colors_precomp = torch.clamp_min(sh2rgb + 0.5, 0.0)
else:
shs = pc.get_features
else:
colors_precomp = override_color
# Rasterize visible Gaussians to image, obtain their radii (on screen).
rendered_image, radii = rasterizer(
means3D = means3D,
means2D = means2D,
shs = shs,
colors_precomp = colors_precomp,
opacities = opacity,
scales = scales,
rotations = rotations,
cov3D_precomp = cov3D_precomp)
# Those Gaussians that were frustum culled or had a radius of 0 were not visible.
# They will be excluded from value updates used in the splitting criteria.
return {"render": rendered_image,
"viewspace_points": screenspace_points,
"visibility_filter" : radii > 0,
"radii": radii}

View File

@@ -0,0 +1,75 @@
import torch
import traceback
import socket
import json
from scene.cameras import MiniCam
host = "127.0.0.1"
port = 6009
conn = None
addr = None
listener = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
def init(wish_host, wish_port):
global host, port, listener
host = wish_host
port = wish_port
listener.bind((host, port))
listener.listen()
listener.settimeout(0)
def try_connect():
global conn, addr, listener
try:
conn, addr = listener.accept()
print(f"\nConnected by {addr}")
conn.settimeout(None)
except Exception as inst:
pass
def read():
global conn
messageLength = conn.recv(4)
messageLength = int.from_bytes(messageLength, 'little')
message = conn.recv(messageLength)
return json.loads(message.decode("utf-8"))
def send(message_bytes, verify):
global conn
if message_bytes != None:
conn.sendall(message_bytes)
conn.sendall(len(verify).to_bytes(4, 'little'))
conn.sendall(bytes(verify, 'ascii'))
def receive():
message = read()
width = message["resolution_x"]
height = message["resolution_y"]
if width != 0 and height != 0:
try:
do_training = bool(message["train"])
fovy = message["fov_y"]
fovx = message["fov_x"]
znear = message["z_near"]
zfar = message["z_far"]
do_shs_python = bool(message["shs_python"])
do_rot_scale_python = bool(message["rot_scale_python"])
keep_alive = bool(message["keep_alive"])
scaling_modifier = message["scaling_modifier"]
world_view_transform = torch.reshape(torch.tensor(message["view_matrix"]), (4, 4)).cuda()
world_view_transform[:,1] = -world_view_transform[:,1]
world_view_transform[:,2] = -world_view_transform[:,2]
full_proj_transform = torch.reshape(torch.tensor(message["view_projection_matrix"]), (4, 4)).cuda()
full_proj_transform[:,1] = -full_proj_transform[:,1]
custom_cam = MiniCam(width, height, fovy, fovx, znear, zfar, world_view_transform, full_proj_transform)
except Exception as e:
print("")
traceback.print_exc()
raise e
return custom_cam, do_training, do_shs_python, do_rot_scale_python, keep_alive, scaling_modifier
else:
return None, None, None, None, None, None