mirror of
https://github.com/graphdeco-inria/gaussian-splatting
synced 2025-06-26 18:18:11 +00:00
Initial commit
This commit is contained in:
88
gaussian_renderer/__init__.py
Normal file
88
gaussian_renderer/__init__.py
Normal file
@@ -0,0 +1,88 @@
|
||||
import torch
|
||||
import math
|
||||
from diff_gaussian_rasterization import GaussianRasterizationSettings, GaussianRasterizer
|
||||
from scene.gaussian_model import GaussianModel
|
||||
from utils.sh_utils import eval_sh
|
||||
|
||||
def render(viewpoint_camera, pc : GaussianModel, pipe, bg_color : torch.Tensor, scaling_modifier = 1.0, override_color = None):
|
||||
"""
|
||||
Render the scene.
|
||||
|
||||
Background tensor (bg_color) must be on GPU!
|
||||
"""
|
||||
|
||||
# Create zero tensor. We will use it to make pytorch return gradients of the 2D (screen-space) means
|
||||
screenspace_points = torch.zeros_like(pc.get_xyz, dtype=pc.get_xyz.dtype, requires_grad=True, device="cuda") + 0
|
||||
try:
|
||||
screenspace_points.retain_grad()
|
||||
except:
|
||||
pass
|
||||
|
||||
# Set up rasterization configuration
|
||||
tanfovx = math.tan(viewpoint_camera.FoVx * 0.5)
|
||||
tanfovy = math.tan(viewpoint_camera.FoVy * 0.5)
|
||||
|
||||
raster_settings = GaussianRasterizationSettings(
|
||||
image_height=int(viewpoint_camera.image_height),
|
||||
image_width=int(viewpoint_camera.image_width),
|
||||
tanfovx=tanfovx,
|
||||
tanfovy=tanfovy,
|
||||
bg=bg_color,
|
||||
scale_modifier=scaling_modifier,
|
||||
viewmatrix=viewpoint_camera.world_view_transform,
|
||||
projmatrix=viewpoint_camera.full_proj_transform,
|
||||
sh_degree=pc.active_sh_degree,
|
||||
campos=viewpoint_camera.camera_center,
|
||||
prefiltered=False
|
||||
)
|
||||
|
||||
rasterizer = GaussianRasterizer(raster_settings=raster_settings)
|
||||
|
||||
means3D = pc.get_xyz
|
||||
means2D = screenspace_points
|
||||
opacity = pc.get_opacity
|
||||
|
||||
# If precomputed 3d covariance is provided, use it. If not, then it will be computed from
|
||||
# scaling / rotation by the rasterizer.
|
||||
scales = None
|
||||
rotations = None
|
||||
cov3D_precomp = None
|
||||
if pipe.compute_cov3D_python:
|
||||
cov3D_precomp = pc.get_covariance(scaling_modifier)
|
||||
else:
|
||||
scales = pc.get_scaling
|
||||
rotations = pc.get_rotation
|
||||
|
||||
# If precomputed colors are provided, use them. Otherwise, if it is desired to precompute colors
|
||||
# from SHs in Python, do it. If not, then SH -> RGB conversion will be done by rasterizer.
|
||||
shs = None
|
||||
colors_precomp = None
|
||||
if colors_precomp is None:
|
||||
if pipe.convert_SHs_python:
|
||||
shs_view = pc.get_features.transpose(1, 2).view(-1, 3, (pc.max_sh_degree+1)**2)
|
||||
dir_pp = (pc.get_xyz - viewpoint_camera.camera_center.repeat(pc.get_features.shape[0], 1))
|
||||
dir_pp_normalized = dir_pp/dir_pp.norm(dim=1, keepdim=True)
|
||||
sh2rgb = eval_sh(pc.active_sh_degree, shs_view, dir_pp_normalized)
|
||||
colors_precomp = torch.clamp_min(sh2rgb + 0.5, 0.0)
|
||||
else:
|
||||
shs = pc.get_features
|
||||
else:
|
||||
colors_precomp = override_color
|
||||
|
||||
# Rasterize visible Gaussians to image, obtain their radii (on screen).
|
||||
rendered_image, radii = rasterizer(
|
||||
means3D = means3D,
|
||||
means2D = means2D,
|
||||
shs = shs,
|
||||
colors_precomp = colors_precomp,
|
||||
opacities = opacity,
|
||||
scales = scales,
|
||||
rotations = rotations,
|
||||
cov3D_precomp = cov3D_precomp)
|
||||
|
||||
# Those Gaussians that were frustum culled or had a radius of 0 were not visible.
|
||||
# They will be excluded from value updates used in the splitting criteria.
|
||||
return {"render": rendered_image,
|
||||
"viewspace_points": screenspace_points,
|
||||
"visibility_filter" : radii > 0,
|
||||
"radii": radii}
|
||||
75
gaussian_renderer/network_gui.py
Normal file
75
gaussian_renderer/network_gui.py
Normal file
@@ -0,0 +1,75 @@
|
||||
import torch
|
||||
import traceback
|
||||
import socket
|
||||
import json
|
||||
from scene.cameras import MiniCam
|
||||
|
||||
host = "127.0.0.1"
|
||||
port = 6009
|
||||
|
||||
conn = None
|
||||
addr = None
|
||||
|
||||
listener = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
|
||||
|
||||
def init(wish_host, wish_port):
|
||||
global host, port, listener
|
||||
host = wish_host
|
||||
port = wish_port
|
||||
listener.bind((host, port))
|
||||
listener.listen()
|
||||
listener.settimeout(0)
|
||||
|
||||
def try_connect():
|
||||
global conn, addr, listener
|
||||
try:
|
||||
conn, addr = listener.accept()
|
||||
print(f"\nConnected by {addr}")
|
||||
conn.settimeout(None)
|
||||
except Exception as inst:
|
||||
pass
|
||||
|
||||
def read():
|
||||
global conn
|
||||
messageLength = conn.recv(4)
|
||||
messageLength = int.from_bytes(messageLength, 'little')
|
||||
message = conn.recv(messageLength)
|
||||
return json.loads(message.decode("utf-8"))
|
||||
|
||||
def send(message_bytes, verify):
|
||||
global conn
|
||||
if message_bytes != None:
|
||||
conn.sendall(message_bytes)
|
||||
conn.sendall(len(verify).to_bytes(4, 'little'))
|
||||
conn.sendall(bytes(verify, 'ascii'))
|
||||
|
||||
def receive():
|
||||
message = read()
|
||||
|
||||
width = message["resolution_x"]
|
||||
height = message["resolution_y"]
|
||||
|
||||
if width != 0 and height != 0:
|
||||
try:
|
||||
do_training = bool(message["train"])
|
||||
fovy = message["fov_y"]
|
||||
fovx = message["fov_x"]
|
||||
znear = message["z_near"]
|
||||
zfar = message["z_far"]
|
||||
do_shs_python = bool(message["shs_python"])
|
||||
do_rot_scale_python = bool(message["rot_scale_python"])
|
||||
keep_alive = bool(message["keep_alive"])
|
||||
scaling_modifier = message["scaling_modifier"]
|
||||
world_view_transform = torch.reshape(torch.tensor(message["view_matrix"]), (4, 4)).cuda()
|
||||
world_view_transform[:,1] = -world_view_transform[:,1]
|
||||
world_view_transform[:,2] = -world_view_transform[:,2]
|
||||
full_proj_transform = torch.reshape(torch.tensor(message["view_projection_matrix"]), (4, 4)).cuda()
|
||||
full_proj_transform[:,1] = -full_proj_transform[:,1]
|
||||
custom_cam = MiniCam(width, height, fovy, fovx, znear, zfar, world_view_transform, full_proj_transform)
|
||||
except Exception as e:
|
||||
print("")
|
||||
traceback.print_exc()
|
||||
raise e
|
||||
return custom_cam, do_training, do_shs_python, do_rot_scale_python, keep_alive, scaling_modifier
|
||||
else:
|
||||
return None, None, None, None, None, None
|
||||
Reference in New Issue
Block a user