mirror of
https://github.com/graphdeco-inria/gaussian-splatting
synced 2024-11-22 16:28:32 +00:00
118 lines
4.3 KiB
Python
118 lines
4.3 KiB
Python
|
# Copyright 2021 The PlenOctree Authors.
|
||
|
# Redistribution and use in source and binary forms, with or without
|
||
|
# modification, are permitted provided that the following conditions are met:
|
||
|
#
|
||
|
# 1. Redistributions of source code must retain the above copyright notice,
|
||
|
# this list of conditions and the following disclaimer.
|
||
|
#
|
||
|
# 2. Redistributions in binary form must reproduce the above copyright notice,
|
||
|
# this list of conditions and the following disclaimer in the documentation
|
||
|
# and/or other materials provided with the distribution.
|
||
|
#
|
||
|
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
||
|
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
||
|
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
||
|
# ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
|
||
|
# LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
||
|
# CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
||
|
# SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
||
|
# INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
||
|
# CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
||
|
# ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
||
|
# POSSIBILITY OF SUCH DAMAGE.
|
||
|
|
||
|
import torch
|
||
|
|
||
|
C0 = 0.28209479177387814
|
||
|
C1 = 0.4886025119029199
|
||
|
C2 = [
|
||
|
1.0925484305920792,
|
||
|
-1.0925484305920792,
|
||
|
0.31539156525252005,
|
||
|
-1.0925484305920792,
|
||
|
0.5462742152960396
|
||
|
]
|
||
|
C3 = [
|
||
|
-0.5900435899266435,
|
||
|
2.890611442640554,
|
||
|
-0.4570457994644658,
|
||
|
0.3731763325901154,
|
||
|
-0.4570457994644658,
|
||
|
1.445305721320277,
|
||
|
-0.5900435899266435
|
||
|
]
|
||
|
C4 = [
|
||
|
2.5033429417967046,
|
||
|
-1.7701307697799304,
|
||
|
0.9461746957575601,
|
||
|
-0.6690465435572892,
|
||
|
0.10578554691520431,
|
||
|
-0.6690465435572892,
|
||
|
0.47308734787878004,
|
||
|
-1.7701307697799304,
|
||
|
0.6258357354491761,
|
||
|
]
|
||
|
|
||
|
|
||
|
def eval_sh(deg, sh, dirs):
|
||
|
"""
|
||
|
Evaluate spherical harmonics at unit directions
|
||
|
using hardcoded SH polynomials.
|
||
|
Works with torch/np/jnp.
|
||
|
... Can be 0 or more batch dimensions.
|
||
|
Args:
|
||
|
deg: int SH deg. Currently, 0-3 supported
|
||
|
sh: jnp.ndarray SH coeffs [..., C, (deg + 1) ** 2]
|
||
|
dirs: jnp.ndarray unit directions [..., 3]
|
||
|
Returns:
|
||
|
[..., C]
|
||
|
"""
|
||
|
assert deg <= 4 and deg >= 0
|
||
|
coeff = (deg + 1) ** 2
|
||
|
assert sh.shape[-1] >= coeff
|
||
|
|
||
|
result = C0 * sh[..., 0]
|
||
|
if deg > 0:
|
||
|
x, y, z = dirs[..., 0:1], dirs[..., 1:2], dirs[..., 2:3]
|
||
|
result = (result -
|
||
|
C1 * y * sh[..., 1] +
|
||
|
C1 * z * sh[..., 2] -
|
||
|
C1 * x * sh[..., 3])
|
||
|
|
||
|
if deg > 1:
|
||
|
xx, yy, zz = x * x, y * y, z * z
|
||
|
xy, yz, xz = x * y, y * z, x * z
|
||
|
result = (result +
|
||
|
C2[0] * xy * sh[..., 4] +
|
||
|
C2[1] * yz * sh[..., 5] +
|
||
|
C2[2] * (2.0 * zz - xx - yy) * sh[..., 6] +
|
||
|
C2[3] * xz * sh[..., 7] +
|
||
|
C2[4] * (xx - yy) * sh[..., 8])
|
||
|
|
||
|
if deg > 2:
|
||
|
result = (result +
|
||
|
C3[0] * y * (3 * xx - yy) * sh[..., 9] +
|
||
|
C3[1] * xy * z * sh[..., 10] +
|
||
|
C3[2] * y * (4 * zz - xx - yy)* sh[..., 11] +
|
||
|
C3[3] * z * (2 * zz - 3 * xx - 3 * yy) * sh[..., 12] +
|
||
|
C3[4] * x * (4 * zz - xx - yy) * sh[..., 13] +
|
||
|
C3[5] * z * (xx - yy) * sh[..., 14] +
|
||
|
C3[6] * x * (xx - 3 * yy) * sh[..., 15])
|
||
|
|
||
|
if deg > 3:
|
||
|
result = (result + C4[0] * xy * (xx - yy) * sh[..., 16] +
|
||
|
C4[1] * yz * (3 * xx - yy) * sh[..., 17] +
|
||
|
C4[2] * xy * (7 * zz - 1) * sh[..., 18] +
|
||
|
C4[3] * yz * (7 * zz - 3) * sh[..., 19] +
|
||
|
C4[4] * (zz * (35 * zz - 30) + 3) * sh[..., 20] +
|
||
|
C4[5] * xz * (7 * zz - 3) * sh[..., 21] +
|
||
|
C4[6] * (xx - yy) * (7 * zz - 1) * sh[..., 22] +
|
||
|
C4[7] * xz * (xx - 3 * yy) * sh[..., 23] +
|
||
|
C4[8] * (xx * (xx - 3 * yy) - yy * (3 * xx - yy)) * sh[..., 24])
|
||
|
return result
|
||
|
|
||
|
def RGB2SH(rgb):
|
||
|
return (rgb - 0.5) / C0
|
||
|
|
||
|
def SH2RGB(sh):
|
||
|
return sh * C0 + 0.5
|