gaussian-splatting/utils/loss_utils.py

92 lines
2.9 KiB
Python
Raw Normal View History

#
# Copyright (C) 2023, Inria
# GRAPHDECO research group, https://team.inria.fr/graphdeco
# All rights reserved.
#
# This software is free for non-commercial, research and evaluation use
# under the terms of the LICENSE.md file.
#
# For inquiries contact george.drettakis@inria.fr
#
2023-07-04 08:00:48 +00:00
import torch
import torch.nn.functional as F
from torch.autograd import Variable
from math import exp
try:
from diff_gaussian_rasterization._C import fusedssim, fusedssim_backward
except:
pass
C1 = 0.01 ** 2
C2 = 0.03 ** 2
class FusedSSIMMap(torch.autograd.Function):
@staticmethod
def forward(ctx, C1, C2, img1, img2):
ssim_map = fusedssim(C1, C2, img1, img2)
ctx.save_for_backward(img1.detach(), img2)
ctx.C1 = C1
ctx.C2 = C2
return ssim_map
@staticmethod
def backward(ctx, opt_grad):
img1, img2 = ctx.saved_tensors
C1, C2 = ctx.C1, ctx.C2
grad = fusedssim_backward(C1, C2, img1, img2, opt_grad)
return None, None, grad, None
2023-07-04 08:00:48 +00:00
def l1_loss(network_output, gt):
return torch.abs((network_output - gt)).mean()
def l2_loss(network_output, gt):
return ((network_output - gt) ** 2).mean()
def gaussian(window_size, sigma):
gauss = torch.Tensor([exp(-(x - window_size // 2) ** 2 / float(2 * sigma ** 2)) for x in range(window_size)])
return gauss / gauss.sum()
def create_window(window_size, channel):
_1D_window = gaussian(window_size, 1.5).unsqueeze(1)
_2D_window = _1D_window.mm(_1D_window.t()).float().unsqueeze(0).unsqueeze(0)
window = Variable(_2D_window.expand(channel, 1, window_size, window_size).contiguous())
return window
def ssim(img1, img2, window_size=11, size_average=True):
channel = img1.size(-3)
window = create_window(window_size, channel)
if img1.is_cuda:
window = window.cuda(img1.get_device())
window = window.type_as(img1)
return _ssim(img1, img2, window, window_size, channel, size_average)
def _ssim(img1, img2, window, window_size, channel, size_average=True):
mu1 = F.conv2d(img1, window, padding=window_size // 2, groups=channel)
mu2 = F.conv2d(img2, window, padding=window_size // 2, groups=channel)
mu1_sq = mu1.pow(2)
mu2_sq = mu2.pow(2)
mu1_mu2 = mu1 * mu2
sigma1_sq = F.conv2d(img1 * img1, window, padding=window_size // 2, groups=channel) - mu1_sq
sigma2_sq = F.conv2d(img2 * img2, window, padding=window_size // 2, groups=channel) - mu2_sq
sigma12 = F.conv2d(img1 * img2, window, padding=window_size // 2, groups=channel) - mu1_mu2
C1 = 0.01 ** 2
C2 = 0.03 ** 2
ssim_map = ((2 * mu1_mu2 + C1) * (2 * sigma12 + C2)) / ((mu1_sq + mu2_sq + C1) * (sigma1_sq + sigma2_sq + C2))
if size_average:
return ssim_map.mean()
else:
return ssim_map.mean(1).mean(1).mean(1)
def fast_ssim(img1, img2):
ssim_map = FusedSSIMMap.apply(C1, C2, img1, img2)
return ssim_map.mean()