mirror of
https://github.com/graphdeco-inria/gaussian-splatting
synced 2024-11-23 00:38:05 +00:00
97 lines
2.6 KiB
Python
97 lines
2.6 KiB
Python
|
from typing import Sequence
|
||
|
|
||
|
from itertools import chain
|
||
|
|
||
|
import torch
|
||
|
import torch.nn as nn
|
||
|
from torchvision import models
|
||
|
|
||
|
from .utils import normalize_activation
|
||
|
|
||
|
|
||
|
def get_network(net_type: str):
|
||
|
if net_type == 'alex':
|
||
|
return AlexNet()
|
||
|
elif net_type == 'squeeze':
|
||
|
return SqueezeNet()
|
||
|
elif net_type == 'vgg':
|
||
|
return VGG16()
|
||
|
else:
|
||
|
raise NotImplementedError('choose net_type from [alex, squeeze, vgg].')
|
||
|
|
||
|
|
||
|
class LinLayers(nn.ModuleList):
|
||
|
def __init__(self, n_channels_list: Sequence[int]):
|
||
|
super(LinLayers, self).__init__([
|
||
|
nn.Sequential(
|
||
|
nn.Identity(),
|
||
|
nn.Conv2d(nc, 1, 1, 1, 0, bias=False)
|
||
|
) for nc in n_channels_list
|
||
|
])
|
||
|
|
||
|
for param in self.parameters():
|
||
|
param.requires_grad = False
|
||
|
|
||
|
|
||
|
class BaseNet(nn.Module):
|
||
|
def __init__(self):
|
||
|
super(BaseNet, self).__init__()
|
||
|
|
||
|
# register buffer
|
||
|
self.register_buffer(
|
||
|
'mean', torch.Tensor([-.030, -.088, -.188])[None, :, None, None])
|
||
|
self.register_buffer(
|
||
|
'std', torch.Tensor([.458, .448, .450])[None, :, None, None])
|
||
|
|
||
|
def set_requires_grad(self, state: bool):
|
||
|
for param in chain(self.parameters(), self.buffers()):
|
||
|
param.requires_grad = state
|
||
|
|
||
|
def z_score(self, x: torch.Tensor):
|
||
|
return (x - self.mean) / self.std
|
||
|
|
||
|
def forward(self, x: torch.Tensor):
|
||
|
x = self.z_score(x)
|
||
|
|
||
|
output = []
|
||
|
for i, (_, layer) in enumerate(self.layers._modules.items(), 1):
|
||
|
x = layer(x)
|
||
|
if i in self.target_layers:
|
||
|
output.append(normalize_activation(x))
|
||
|
if len(output) == len(self.target_layers):
|
||
|
break
|
||
|
return output
|
||
|
|
||
|
|
||
|
class SqueezeNet(BaseNet):
|
||
|
def __init__(self):
|
||
|
super(SqueezeNet, self).__init__()
|
||
|
|
||
|
self.layers = models.squeezenet1_1(True).features
|
||
|
self.target_layers = [2, 5, 8, 10, 11, 12, 13]
|
||
|
self.n_channels_list = [64, 128, 256, 384, 384, 512, 512]
|
||
|
|
||
|
self.set_requires_grad(False)
|
||
|
|
||
|
|
||
|
class AlexNet(BaseNet):
|
||
|
def __init__(self):
|
||
|
super(AlexNet, self).__init__()
|
||
|
|
||
|
self.layers = models.alexnet(True).features
|
||
|
self.target_layers = [2, 5, 8, 10, 12]
|
||
|
self.n_channels_list = [64, 192, 384, 256, 256]
|
||
|
|
||
|
self.set_requires_grad(False)
|
||
|
|
||
|
|
||
|
class VGG16(BaseNet):
|
||
|
def __init__(self):
|
||
|
super(VGG16, self).__init__()
|
||
|
|
||
|
self.layers = models.vgg16(weights=models.VGG16_Weights.IMAGENET1K_V1).features
|
||
|
self.target_layers = [4, 9, 16, 23, 30]
|
||
|
self.n_channels_list = [64, 128, 256, 512, 512]
|
||
|
|
||
|
self.set_requires_grad(False)
|