gaussian-splatting/gaussian_renderer/__init__.py

129 lines
4.7 KiB
Python
Raw Permalink Normal View History

#
# Copyright (C) 2023, Inria
# GRAPHDECO research group, https://team.inria.fr/graphdeco
# All rights reserved.
#
# This software is free for non-commercial, research and evaluation use
# under the terms of the LICENSE.md file.
#
# For inquiries contact george.drettakis@inria.fr
#
2023-07-04 08:00:48 +00:00
import torch
import math
from diff_gaussian_rasterization import GaussianRasterizationSettings, GaussianRasterizer
from scene.gaussian_model import GaussianModel
from utils.sh_utils import eval_sh
def render(viewpoint_camera, pc : GaussianModel, pipe, bg_color : torch.Tensor, scaling_modifier = 1.0, separate_sh = False, override_color = None, use_trained_exp=False):
2023-07-04 08:00:48 +00:00
"""
Render the scene.
Background tensor (bg_color) must be on GPU!
"""
# Create zero tensor. We will use it to make pytorch return gradients of the 2D (screen-space) means
screenspace_points = torch.zeros_like(pc.get_xyz, dtype=pc.get_xyz.dtype, requires_grad=True, device="cuda") + 0
try:
screenspace_points.retain_grad()
except:
pass
# Set up rasterization configuration
tanfovx = math.tan(viewpoint_camera.FoVx * 0.5)
tanfovy = math.tan(viewpoint_camera.FoVy * 0.5)
raster_settings = GaussianRasterizationSettings(
image_height=int(viewpoint_camera.image_height),
image_width=int(viewpoint_camera.image_width),
tanfovx=tanfovx,
tanfovy=tanfovy,
bg=bg_color,
scale_modifier=scaling_modifier,
viewmatrix=viewpoint_camera.world_view_transform,
projmatrix=viewpoint_camera.full_proj_transform,
sh_degree=pc.active_sh_degree,
campos=viewpoint_camera.camera_center,
2023-07-23 10:48:17 +00:00
prefiltered=False,
2024-09-06 14:42:18 +00:00
debug=pipe.debug,
antialiasing=pipe.antialiasing
2023-07-04 08:00:48 +00:00
)
rasterizer = GaussianRasterizer(raster_settings=raster_settings)
means3D = pc.get_xyz
means2D = screenspace_points
opacity = pc.get_opacity
# If precomputed 3d covariance is provided, use it. If not, then it will be computed from
# scaling / rotation by the rasterizer.
scales = None
rotations = None
cov3D_precomp = None
2024-08-21 12:30:43 +00:00
2023-07-04 08:00:48 +00:00
if pipe.compute_cov3D_python:
cov3D_precomp = pc.get_covariance(scaling_modifier)
else:
scales = pc.get_scaling
rotations = pc.get_rotation
# If precomputed colors are provided, use them. Otherwise, if it is desired to precompute colors
# from SHs in Python, do it. If not, then SH -> RGB conversion will be done by rasterizer.
shs = None
colors_precomp = None
if override_color is None:
2023-07-04 08:00:48 +00:00
if pipe.convert_SHs_python:
shs_view = pc.get_features.transpose(1, 2).view(-1, 3, (pc.max_sh_degree+1)**2)
dir_pp = (pc.get_xyz - viewpoint_camera.camera_center.repeat(pc.get_features.shape[0], 1))
dir_pp_normalized = dir_pp/dir_pp.norm(dim=1, keepdim=True)
sh2rgb = eval_sh(pc.active_sh_degree, shs_view, dir_pp_normalized)
colors_precomp = torch.clamp_min(sh2rgb + 0.5, 0.0)
else:
if separate_sh:
dc, shs = pc.get_features_dc, pc.get_features_rest
else:
shs = pc.get_features
2023-07-04 08:00:48 +00:00
else:
colors_precomp = override_color
# Rasterize visible Gaussians to image, obtain their radii (on screen).
if separate_sh:
rendered_image, radii, depth_image = rasterizer(
means3D = means3D,
means2D = means2D,
dc = dc,
shs = shs,
colors_precomp = colors_precomp,
opacities = opacity,
scales = scales,
rotations = rotations,
cov3D_precomp = cov3D_precomp)
else:
rendered_image, radii, depth_image = rasterizer(
means3D = means3D,
means2D = means2D,
shs = shs,
colors_precomp = colors_precomp,
opacities = opacity,
scales = scales,
rotations = rotations,
cov3D_precomp = cov3D_precomp)
2024-08-21 12:30:43 +00:00
# Apply exposure to rendered image (training only)
if use_trained_exp:
exposure = pc.get_exposure_from_name(viewpoint_camera.image_name)
rendered_image = torch.matmul(rendered_image.permute(1, 2, 0), exposure[:3, :3]).permute(2, 0, 1) + exposure[:3, 3, None, None]
2023-07-04 08:00:48 +00:00
# Those Gaussians that were frustum culled or had a radius of 0 were not visible.
# They will be excluded from value updates used in the splitting criteria.
2024-08-21 12:30:43 +00:00
rendered_image = rendered_image.clamp(0, 1)
out = {
"render": rendered_image,
"viewspace_points": screenspace_points,
"visibility_filter" : (radii > 0).nonzero(),
"radii": radii,
"depth" : depth_image
}
return out