gaussian-splatting/scene/__init__.py

101 lines
4.4 KiB
Python
Raw Permalink Normal View History

#
# Copyright (C) 2023, Inria
# GRAPHDECO research group, https://team.inria.fr/graphdeco
# All rights reserved.
#
# This software is free for non-commercial, research and evaluation use
# under the terms of the LICENSE.md file.
#
# For inquiries contact george.drettakis@inria.fr
#
2023-07-04 08:00:48 +00:00
import os
import random
import json
from utils.system_utils import searchForMaxIteration
from scene.dataset_readers import sceneLoadTypeCallbacks
from scene.gaussian_model import GaussianModel
from arguments import ModelParams
from utils.camera_utils import cameraList_from_camInfos, camera_to_JSON
class Scene:
gaussians : GaussianModel
def __init__(self, args : ModelParams, gaussians : GaussianModel, load_iteration=None, shuffle=True, resolution_scales=[1.0]):
"""b
:param path: Path to colmap scene main folder.
"""
self.model_path = args.model_path
self.loaded_iter = None
self.gaussians = gaussians
if load_iteration:
if load_iteration == -1:
self.loaded_iter = searchForMaxIteration(os.path.join(self.model_path, "point_cloud"))
else:
self.loaded_iter = load_iteration
print("Loading trained model at iteration {}".format(self.loaded_iter))
self.train_cameras = {}
self.test_cameras = {}
if os.path.exists(os.path.join(args.source_path, "sparse")):
2024-08-21 12:30:43 +00:00
scene_info = sceneLoadTypeCallbacks["Colmap"](args.source_path, args.images, args.depths, args.eval, args.train_test_exp)
2023-07-04 08:00:48 +00:00
elif os.path.exists(os.path.join(args.source_path, "transforms_train.json")):
print("Found transforms_train.json file, assuming Blender data set!")
scene_info = sceneLoadTypeCallbacks["Blender"](args.source_path, args.white_background, args.depths, args.eval)
2023-07-04 08:00:48 +00:00
else:
assert False, "Could not recognize scene type!"
if not self.loaded_iter:
with open(scene_info.ply_path, 'rb') as src_file, open(os.path.join(self.model_path, "input.ply") , 'wb') as dest_file:
dest_file.write(src_file.read())
json_cams = []
camlist = []
if scene_info.test_cameras:
camlist.extend(scene_info.test_cameras)
if scene_info.train_cameras:
camlist.extend(scene_info.train_cameras)
for id, cam in enumerate(camlist):
json_cams.append(camera_to_JSON(id, cam))
with open(os.path.join(self.model_path, "cameras.json"), 'w') as file:
json.dump(json_cams, file)
if shuffle:
random.shuffle(scene_info.train_cameras) # Multi-res consistent random shuffling
random.shuffle(scene_info.test_cameras) # Multi-res consistent random shuffling
self.cameras_extent = scene_info.nerf_normalization["radius"]
for resolution_scale in resolution_scales:
print("Loading Training Cameras")
self.train_cameras[resolution_scale] = cameraList_from_camInfos(scene_info.train_cameras, resolution_scale, args, scene_info.is_nerf_synthetic, False)
2023-07-04 08:00:48 +00:00
print("Loading Test Cameras")
self.test_cameras[resolution_scale] = cameraList_from_camInfos(scene_info.test_cameras, resolution_scale, args, scene_info.is_nerf_synthetic, True)
2023-07-04 08:00:48 +00:00
if self.loaded_iter:
self.gaussians.load_ply(os.path.join(self.model_path,
"point_cloud",
"iteration_" + str(self.loaded_iter),
2024-08-26 09:30:36 +00:00
"point_cloud.ply"), args.train_test_exp)
2023-07-04 08:00:48 +00:00
else:
2024-08-21 12:30:43 +00:00
self.gaussians.create_from_pcd(scene_info.point_cloud, scene_info.train_cameras, self.cameras_extent)
2023-07-04 08:00:48 +00:00
def save(self, iteration):
point_cloud_path = os.path.join(self.model_path, "point_cloud/iteration_{}".format(iteration))
self.gaussians.save_ply(os.path.join(point_cloud_path, "point_cloud.ply"))
2024-08-21 12:30:43 +00:00
exposure_dict = {
image_name: self.gaussians.get_exposure_from_name(image_name).detach().cpu().numpy().tolist()
for image_name in self.gaussians.exposure_mapping
}
with open(os.path.join(self.model_path, "exposure.json"), "w") as f:
json.dump(exposure_dict, f, indent=2)
2023-07-04 08:00:48 +00:00
def getTrainCameras(self, scale=1.0):
return self.train_cameras[scale]
def getTestCameras(self, scale=1.0):
2024-08-21 12:30:43 +00:00
return self.test_cameras[scale]