mirror of
https://github.com/open-webui/pipelines
synced 2025-05-13 00:50:44 +00:00
45 lines
1.5 KiB
Python
45 lines
1.5 KiB
Python
from typing import List, Union, Generator, Iterator
|
|
from schemas import OpenAIChatMessage
|
|
|
|
|
|
class Pipeline:
|
|
def __init__(self):
|
|
self.documents = None
|
|
self.index = None
|
|
|
|
async def on_startup(self):
|
|
from llama_index.embeddings.ollama import OllamaEmbedding
|
|
from llama_index.llms.ollama import Ollama
|
|
from llama_index.core import Settings, VectorStoreIndex, SimpleDirectoryReader
|
|
|
|
Settings.embed_model = OllamaEmbedding(
|
|
model_name="nomic-embed-text",
|
|
base_url="http://localhost:11434",
|
|
)
|
|
Settings.llm = Ollama(model="llama3")
|
|
|
|
# This function is called when the server is started.
|
|
global documents, index
|
|
|
|
self.documents = SimpleDirectoryReader("./data").load_data()
|
|
self.index = VectorStoreIndex.from_documents(self.documents)
|
|
pass
|
|
|
|
async def on_shutdown(self):
|
|
# This function is called when the server is stopped.
|
|
pass
|
|
|
|
def pipe(
|
|
self, user_message: str, model_id: str, messages: List[dict], body: dict
|
|
) -> Union[str, Generator, Iterator]:
|
|
# This is where you can add your custom RAG pipeline.
|
|
# Typically, you would retrieve relevant information from your knowledge base and synthesize it to generate a response.
|
|
|
|
print(messages)
|
|
print(user_message)
|
|
|
|
query_engine = self.index.as_query_engine(streaming=True)
|
|
response = query_engine.query(user_message)
|
|
|
|
return response.response_gen
|