pipelines/examples/llamaindex_pipeline.py
2024-05-21 14:40:52 -07:00

28 lines
825 B
Python

from typing import List, Union, Generator
from schemas import OpenAIChatMessage
import os
# Set the OpenAI API key
os.environ["OPENAI_API_KEY"] = "your_openai_api_key_here"
from llama_index.core import VectorStoreIndex, SimpleDirectoryReader
documents = SimpleDirectoryReader("./data").load_data()
index = VectorStoreIndex.from_documents(documents)
def get_response(
user_message: str, messages: List[OpenAIChatMessage]
) -> Union[str, Generator]:
# This is where you can add your custom RAG pipeline.
# Typically, you would retrieve relevant information from your knowledge base and synthesize it to generate a response.
print(messages)
print(user_message)
query_engine = index.as_query_engine(streaming=True)
response = query_engine.query(user_message)
return response.response_gen