pipelines/examples/llamaindex_ollama_github_pipeline.py
2024-05-30 23:00:30 -07:00

95 lines
2.9 KiB
Python

"""
title: Llama Index Ollama Github Pipeline
author: open-webui
date: 2024-05-30
version: 1.0
license: MIT
description: A pipeline for retrieving relevant information from a knowledge base using the Llama Index library with Ollama embeddings from a GitHub repository.
requirements: llama-index, llama-index-llms-ollama, llama-index-embeddings-ollama, llama-index-readers-github
"""
from typing import List, Union, Generator, Iterator
from schemas import OpenAIChatMessage
import os
import asyncio
class Pipeline:
def __init__(self):
self.documents = None
self.index = None
async def on_startup(self):
from llama_index.embeddings.ollama import OllamaEmbedding
from llama_index.llms.ollama import Ollama
from llama_index.core import VectorStoreIndex, Settings
from llama_index.readers.github import GithubRepositoryReader, GithubClient
Settings.embed_model = OllamaEmbedding(
model_name="nomic-embed-text",
base_url="http://localhost:11434",
)
Settings.llm = Ollama(model="llama3")
global index, documents
github_token = os.environ.get("GITHUB_TOKEN")
owner = "open-webui"
repo = "plugin-server"
branch = "main"
github_client = GithubClient(github_token=github_token, verbose=True)
reader = GithubRepositoryReader(
github_client=github_client,
owner=owner,
repo=repo,
use_parser=False,
verbose=False,
filter_file_extensions=(
[
".png",
".jpg",
".jpeg",
".gif",
".svg",
".ico",
"json",
".ipynb",
],
GithubRepositoryReader.FilterType.EXCLUDE,
),
)
loop = asyncio.new_event_loop()
reader._loop = loop
try:
# Load data from the branch
self.documents = await asyncio.to_thread(reader.load_data, branch=branch)
self.index = VectorStoreIndex.from_documents(self.documents)
finally:
loop.close()
print(self.documents)
print(self.index)
async def on_shutdown(self):
# This function is called when the server is stopped.
pass
def pipe(
self, user_message: str, model_id: str, messages: List[dict], body: dict
) -> Union[str, Generator, Iterator]:
# This is where you can add your custom RAG pipeline.
# Typically, you would retrieve relevant information from your knowledge base and synthesize it to generate a response.
print(messages)
print(user_message)
query_engine = self.index.as_query_engine(streaming=True)
response = query_engine.query(user_message)
return response.response_gen