pipelines/examples/pipelines/providers/azure_openai_pipeline.py
kmishmael 0303263197 fix: initialize request object, correct typo, and rename parameter
- Initialize `r` to `None` to prevent potential `NameError`.
- Correct typo: change "funcions" to "functions" in allowed parameters.
- Rename "dataSources" to "data_sources" to align with API specs.
2024-09-01 18:52:09 +03:00

91 lines
3.8 KiB
Python

from typing import List, Union, Generator, Iterator
from pydantic import BaseModel
import requests
import os
class Pipeline:
class Valves(BaseModel):
# You can add your custom valves here.
AZURE_OPENAI_API_KEY: str
AZURE_OPENAI_ENDPOINT: str
AZURE_OPENAI_DEPLOYMENT_NAME: str
AZURE_OPENAI_API_VERSION: str
def __init__(self):
# Optionally, you can set the id and name of the pipeline.
# Best practice is to not specify the id so that it can be automatically inferred from the filename, so that users can install multiple versions of the same pipeline.
# The identifier must be unique across all pipelines.
# The identifier must be an alphanumeric string that can include underscores or hyphens. It cannot contain spaces, special characters, slashes, or backslashes.
# self.id = "azure_openai_pipeline"
self.name = "Azure OpenAI Pipeline"
self.valves = self.Valves(
**{
"AZURE_OPENAI_API_KEY": os.getenv("AZURE_OPENAI_API_KEY", "your-azure-openai-api-key-here"),
"AZURE_OPENAI_ENDPOINT": os.getenv("AZURE_OPENAI_ENDPOINT", "your-azure-openai-endpoint-here"),
"AZURE_OPENAI_DEPLOYMENT_NAME": os.getenv("AZURE_OPENAI_DEPLOYMENT_NAME", "your-deployment-name-here"),
"AZURE_OPENAI_API_VERSION": os.getenv("AZURE_OPENAI_API_VERSION", "2024-02-01"),
}
)
pass
async def on_startup(self):
# This function is called when the server is started.
print(f"on_startup:{__name__}")
pass
async def on_shutdown(self):
# This function is called when the server is stopped.
print(f"on_shutdown:{__name__}")
pass
def pipe(
self, user_message: str, model_id: str, messages: List[dict], body: dict
) -> Union[str, Generator, Iterator]:
# This is where you can add your custom pipelines like RAG.
print(f"pipe:{__name__}")
print(messages)
print(user_message)
headers = {
"api-key": self.valves.AZURE_OPENAI_API_KEY,
"Content-Type": "application/json",
}
url = f"{self.valves.AZURE_OPENAI_ENDPOINT}/openai/deployments/{self.valves.AZURE_OPENAI_DEPLOYMENT_NAME}/chat/completions?api-version={self.valves.AZURE_OPENAI_API_VERSION}"
allowed_params = {'messages', 'temperature', 'role', 'content', 'contentPart', 'contentPartImage',
'enhancements', 'data_sources', 'n', 'stream', 'stop', 'max_tokens', 'presence_penalty',
'frequency_penalty', 'logit_bias', 'user', 'function_call', 'functions', 'tools',
'tool_choice', 'top_p', 'log_probs', 'top_logprobs', 'response_format', 'seed'}
# remap user field
if "user" in body and not isinstance(body["user"], str):
body["user"] = body["user"]["id"] if "id" in body["user"] else str(body["user"])
filtered_body = {k: v for k, v in body.items() if k in allowed_params}
# log fields that were filtered out as a single line
if len(body) != len(filtered_body):
print(f"Dropped params: {', '.join(set(body.keys()) - set(filtered_body.keys()))}")
# Initialize the response variable to None.
r = None
try:
r = requests.post(
url=url,
json=filtered_body,
headers=headers,
stream=True,
)
r.raise_for_status()
if body["stream"]:
return r.iter_lines()
else:
return r.json()
except Exception as e:
if r:
text = r.text
return f"Error: {e} ({text})"
else:
return f"Error: {e}"