pipelines/examples/llamaindex_ollama_github_pipeline.py
2024-05-21 16:08:48 -07:00

65 lines
1.7 KiB
Python

from typing import List, Union, Generator
from schemas import OpenAIChatMessage
from llama_index.embeddings.ollama import OllamaEmbedding
from llama_index.llms.ollama import Ollama
from llama_index.core import VectorStoreIndex, Settings
from llama_index.readers.github import GithubRepositoryReader, GithubClient
Settings.embed_model = OllamaEmbedding(
model_name="nomic-embed-text",
base_url="http://localhost:11434",
)
Settings.llm = Ollama(model="llama3")
import os
github_token = os.environ.get("GITHUB_TOKEN")
owner = "open-webui"
repo = "open-webui"
branch = "main"
github_client = GithubClient(github_token=github_token, verbose=True)
documents = GithubRepositoryReader(
github_client=github_client,
owner=owner,
repo=repo,
use_parser=False,
verbose=False,
filter_directories=(
["docs"],
GithubRepositoryReader.FilterType.INCLUDE,
),
filter_file_extensions=(
[
".png",
".jpg",
".jpeg",
".gif",
".svg",
".ico",
"json",
".ipynb",
],
GithubRepositoryReader.FilterType.EXCLUDE,
),
).load_data(branch=branch)
index = VectorStoreIndex.from_documents(documents)
def get_response(
user_message: str, messages: List[OpenAIChatMessage]
) -> Union[str, Generator]:
# This is where you can add your custom RAG pipeline.
# Typically, you would retrieve relevant information from your knowledge base and synthesize it to generate a response.
print(messages)
print(user_message)
query_engine = index.as_query_engine(streaming=True)
response = query_engine.query(user_message)
return response.response_gen