mirror of
https://github.com/open-webui/pipelines
synced 2025-05-11 16:10:45 +00:00
188 lines
6.7 KiB
Python
188 lines
6.7 KiB
Python
from typing import List, Optional
|
|
from pydantic import BaseModel
|
|
from schemas import OpenAIChatMessage
|
|
import os
|
|
import requests
|
|
import json
|
|
|
|
from utils.pipelines.main import (
|
|
get_last_user_message,
|
|
add_or_update_system_message,
|
|
get_tools_specs,
|
|
)
|
|
|
|
# System prompt for function calling
|
|
DEFAULT_SYSTEM_PROMPT = (
|
|
"""Tools: {}
|
|
|
|
If a function tool doesn't match the query, return an empty string. Else, pick a
|
|
function tool, fill in the parameters from the function tool's schema, and
|
|
return it in the format {{ "name": \"functionName\", "parameters": {{ "key":
|
|
"value" }} }}. Only pick a function if the user asks. Only return the object. Do not return any other text."
|
|
"""
|
|
)
|
|
|
|
class Pipeline:
|
|
class Valves(BaseModel):
|
|
# List target pipeline ids (models) that this filter will be connected to.
|
|
# If you want to connect this filter to all pipelines, you can set pipelines to ["*"]
|
|
pipelines: List[str] = []
|
|
|
|
# Assign a priority level to the filter pipeline.
|
|
# The priority level determines the order in which the filter pipelines are executed.
|
|
# The lower the number, the higher the priority.
|
|
priority: int = 0
|
|
|
|
# Valves for function calling
|
|
OPENAI_API_BASE_URL: str
|
|
OPENAI_API_KEY: str
|
|
TASK_MODEL: str
|
|
TEMPLATE: str
|
|
|
|
def __init__(self, prompt: str | None = None) -> None:
|
|
# Pipeline filters are only compatible with Open WebUI
|
|
# You can think of filter pipeline as a middleware that can be used to edit the form data before it is sent to the OpenAI API.
|
|
self.type = "filter"
|
|
|
|
# Optionally, you can set the id and name of the pipeline.
|
|
# Best practice is to not specify the id so that it can be automatically inferred from the filename, so that users can install multiple versions of the same pipeline.
|
|
# The identifier must be unique across all pipelines.
|
|
# The identifier must be an alphanumeric string that can include underscores or hyphens. It cannot contain spaces, special characters, slashes, or backslashes.
|
|
# self.id = "function_calling_blueprint"
|
|
self.name = "Function Calling Blueprint"
|
|
self.prompt = prompt or DEFAULT_SYSTEM_PROMPT
|
|
self.tools: object = None
|
|
|
|
# Initialize valves
|
|
self.valves = self.Valves(
|
|
**{
|
|
"pipelines": ["*"], # Connect to all pipelines
|
|
"OPENAI_API_BASE_URL": os.getenv(
|
|
"OPENAI_API_BASE_URL", "https://api.openai.com/v1"
|
|
),
|
|
"OPENAI_API_KEY": os.getenv("OPENAI_API_KEY", "YOUR_OPENAI_API_KEY"),
|
|
"TASK_MODEL": os.getenv("TASK_MODEL", "gpt-3.5-turbo"),
|
|
"TEMPLATE": """Use the following context as your learned knowledge, inside <context></context> XML tags.
|
|
<context>
|
|
{{CONTEXT}}
|
|
</context>
|
|
|
|
When answer to user:
|
|
- If you don't know, just say that you don't know.
|
|
- If you don't know when you are not sure, ask for clarification.
|
|
Avoid mentioning that you obtained the information from the context.
|
|
And answer according to the language of the user's question.""",
|
|
}
|
|
)
|
|
|
|
async def on_startup(self):
|
|
# This function is called when the server is started.
|
|
print(f"on_startup:{__name__}")
|
|
pass
|
|
|
|
async def on_shutdown(self):
|
|
# This function is called when the server is stopped.
|
|
print(f"on_shutdown:{__name__}")
|
|
pass
|
|
|
|
async def inlet(self, body: dict, user: Optional[dict] = None) -> dict:
|
|
# If title generation is requested, skip the function calling filter
|
|
if body.get("title", False):
|
|
return body
|
|
|
|
print(f"pipe:{__name__}")
|
|
print(user)
|
|
|
|
# Get the last user message
|
|
user_message = get_last_user_message(body["messages"])
|
|
|
|
# Get the tools specs
|
|
tools_specs = get_tools_specs(self.tools)
|
|
|
|
prompt = self.prompt.format(json.dumps(tools_specs, indent=2))
|
|
content = "History:\n" + "\n".join(
|
|
[
|
|
f"{message['role']}: {message['content']}"
|
|
for message in body["messages"][::-1][:4]
|
|
]
|
|
) + f"Query: {user_message}"
|
|
|
|
result = self.run_completion(prompt, content)
|
|
messages = self.call_function(result, body["messages"])
|
|
|
|
return {**body, "messages": messages}
|
|
|
|
# Call the function
|
|
def call_function(self, result, messages: list[dict]) -> list[dict]:
|
|
if "name" not in result:
|
|
return messages
|
|
|
|
function = getattr(self.tools, result["name"])
|
|
function_result = None
|
|
try:
|
|
function_result = function(**result["parameters"])
|
|
except Exception as e:
|
|
print(e)
|
|
|
|
# Add the function result to the system prompt
|
|
if function_result:
|
|
system_prompt = self.valves.TEMPLATE.replace(
|
|
"{{CONTEXT}}", function_result
|
|
)
|
|
|
|
messages = add_or_update_system_message(
|
|
system_prompt, messages
|
|
)
|
|
|
|
# Return the updated messages
|
|
return messages
|
|
|
|
def run_completion(self, system_prompt: str, content: str) -> dict:
|
|
r = None
|
|
try:
|
|
# Call the OpenAI API to get the function response
|
|
r = requests.post(
|
|
url=f"{self.valves.OPENAI_API_BASE_URL}/chat/completions",
|
|
json={
|
|
"model": self.valves.TASK_MODEL,
|
|
"messages": [
|
|
{
|
|
"role": "system",
|
|
"content": system_prompt,
|
|
},
|
|
{
|
|
"role": "user",
|
|
"content": content,
|
|
},
|
|
],
|
|
# TODO: dynamically add response_format?
|
|
# "response_format": {"type": "json_object"},
|
|
},
|
|
headers={
|
|
"Authorization": f"Bearer {self.valves.OPENAI_API_KEY}",
|
|
"Content-Type": "application/json",
|
|
},
|
|
stream=False,
|
|
)
|
|
r.raise_for_status()
|
|
|
|
response = r.json()
|
|
content = response["choices"][0]["message"]["content"]
|
|
|
|
# Parse the function response
|
|
if content != "":
|
|
result = json.loads(content)
|
|
print(result)
|
|
return result
|
|
|
|
except Exception as e:
|
|
print(f"Error: {e}")
|
|
|
|
if r:
|
|
try:
|
|
print(r.json())
|
|
except:
|
|
pass
|
|
|
|
return {}
|