mirror of
https://github.com/open-webui/pipelines
synced 2025-05-11 08:01:08 +00:00
50 lines
1.5 KiB
Python
50 lines
1.5 KiB
Python
"""
|
|
title: Llama Index Pipeline
|
|
author: open-webui
|
|
date: 2024-05-30
|
|
version: 1.0
|
|
license: MIT
|
|
description: A pipeline for retrieving relevant information from a knowledge base using the Llama Index library.
|
|
requirements: llama-index
|
|
"""
|
|
|
|
from typing import List, Union, Generator, Iterator
|
|
from schemas import OpenAIChatMessage
|
|
|
|
|
|
class Pipeline:
|
|
def __init__(self):
|
|
self.documents = None
|
|
self.index = None
|
|
|
|
async def on_startup(self):
|
|
import os
|
|
|
|
# Set the OpenAI API key
|
|
os.environ["OPENAI_API_KEY"] = "your-api-key-here"
|
|
|
|
from llama_index.core import VectorStoreIndex, SimpleDirectoryReader
|
|
|
|
self.documents = SimpleDirectoryReader("./data").load_data()
|
|
self.index = VectorStoreIndex.from_documents(self.documents)
|
|
# This function is called when the server is started.
|
|
pass
|
|
|
|
async def on_shutdown(self):
|
|
# This function is called when the server is stopped.
|
|
pass
|
|
|
|
def pipe(
|
|
self, user_message: str, model_id: str, messages: List[dict], body: dict
|
|
) -> Union[str, Generator, Iterator]:
|
|
# This is where you can add your custom RAG pipeline.
|
|
# Typically, you would retrieve relevant information from your knowledge base and synthesize it to generate a response.
|
|
|
|
print(messages)
|
|
print(user_message)
|
|
|
|
query_engine = self.index.as_query_engine(streaming=True)
|
|
response = query_engine.query(user_message)
|
|
|
|
return response.response_gen
|