pipelines/examples/litellm_subprocess_manifold_pipeline.py
2024-05-30 23:00:30 -07:00

212 lines
7.1 KiB
Python

"""
title: LiteLLM Subprocess Manifold Pipeline
author: open-webui
date: 2024-05-30
version: 1.0
license: MIT
description: A manifold pipeline that uses LiteLLM as a subprocess.
requirements: yaml, litellm[proxy]
"""
from typing import List, Union, Generator, Iterator
from schemas import OpenAIChatMessage
from pydantic import BaseModel
import requests
import os
import asyncio
import subprocess
import yaml
class Pipeline:
def __init__(self):
# You can also set the pipelines that are available in this pipeline.
# Set manifold to True if you want to use this pipeline as a manifold.
# Manifold pipelines can have multiple pipelines.
self.type = "manifold"
# Optionally, you can set the id and name of the pipeline.
# Assign a unique identifier to the pipeline.
# The identifier must be unique across all pipelines.
# The identifier must be an alphanumeric string that can include underscores or hyphens. It cannot contain spaces, special characters, slashes, or backslashes.
self.id = "litellm_subprocess_manifold"
# Optionally, you can set the name of the manifold pipeline.
self.name = "LiteLLM: "
class Valves(BaseModel):
LITELLM_CONFIG_DIR: str = "./litellm/config.yaml"
LITELLM_PROXY_PORT: int = 4001
LITELLM_PROXY_HOST: str = "127.0.0.1"
litellm_config: dict = {}
# Initialize Valves
self.valves = Valves(**{"LITELLM_CONFIG_DIR": f"./litellm/config.yaml"})
self.background_process = None
pass
async def on_startup(self):
# This function is called when the server is started.
print(f"on_startup:{__name__}")
# Check if the config file exists
if not os.path.exists(self.valves.LITELLM_CONFIG_DIR):
with open(self.valves.LITELLM_CONFIG_DIR, "w") as file:
yaml.dump(
{
"general_settings": {},
"litellm_settings": {},
"model_list": [],
"router_settings": {},
},
file,
)
print(
f"Config file not found. Created a default config file at {self.valves.LITELLM_CONFIG_DIR}"
)
with open(self.valves.LITELLM_CONFIG_DIR, "r") as file:
litellm_config = yaml.safe_load(file)
self.valves.litellm_config = litellm_config
asyncio.create_task(self.start_litellm_background())
pass
async def on_shutdown(self):
# This function is called when the server is stopped.
print(f"on_shutdown:{__name__}")
await self.shutdown_litellm_background()
pass
async def on_valves_updated(self):
# This function is called when the valves are updated.
print(f"on_valves_updated:{__name__}")
with open(self.valves.LITELLM_CONFIG_DIR, "r") as file:
litellm_config = yaml.safe_load(file)
self.valves.litellm_config = litellm_config
await self.shutdown_litellm_background()
await self.start_litellm_background()
pass
async def run_background_process(self, command):
print("run_background_process")
try:
# Log the command to be executed
print(f"Executing command: {command}")
# Execute the command and create a subprocess
process = await asyncio.create_subprocess_exec(
*command,
stdout=subprocess.PIPE,
stderr=subprocess.PIPE,
)
self.background_process = process
print("Subprocess started successfully.")
# Capture STDERR for debugging purposes
stderr_output = await process.stderr.read()
stderr_text = stderr_output.decode().strip()
if stderr_text:
print(f"Subprocess STDERR: {stderr_text}")
# log.info output line by line
async for line in process.stdout:
print(line.decode().strip())
# Wait for the process to finish
returncode = await process.wait()
print(f"Subprocess exited with return code {returncode}")
except Exception as e:
print(f"Failed to start subprocess: {e}")
raise # Optionally re-raise the exception if you want it to propagate
async def start_litellm_background(self):
print("start_litellm_background")
# Command to run in the background
command = [
"litellm",
"--port",
str(self.valves.LITELLM_PROXY_PORT),
"--host",
self.valves.LITELLM_PROXY_HOST,
"--telemetry",
"False",
"--config",
self.valves.LITELLM_CONFIG_DIR,
]
await self.run_background_process(command)
async def shutdown_litellm_background(self):
print("shutdown_litellm_background")
if self.background_process:
self.background_process.terminate()
await self.background_process.wait() # Ensure the process has terminated
print("Subprocess terminated")
self.background_process = None
def get_litellm_models(self):
if self.background_process:
try:
r = requests.get(
f"http://{self.valves.LITELLM_PROXY_HOST}:{self.valves.LITELLM_PROXY_PORT}/v1/models"
)
models = r.json()
return [
{
"id": model["id"],
"name": model["name"] if "name" in model else model["id"],
}
for model in models["data"]
]
except Exception as e:
print(f"Error: {e}")
return [
{
"id": self.id,
"name": "Could not fetch models from LiteLLM, please update the URL in the valves.",
},
]
else:
return []
# Pipelines are the models that are available in the manifold.
# It can be a list or a function that returns a list.
def pipelines(self) -> List[dict]:
return self.get_litellm_models()
def pipe(
self, user_message: str, model_id: str, messages: List[dict], body: dict
) -> Union[str, Generator, Iterator]:
if "user" in body:
print("######################################")
print(f'# User: {body["user"]["name"]} ({body["user"]["id"]})')
print(f"# Message: {user_message}")
print("######################################")
try:
r = requests.post(
url=f"http://{self.valves.LITELLM_PROXY_HOST}:{self.valves.LITELLM_PROXY_PORT}/v1/chat/completions",
json={**body, "model": model_id, "user_id": body["user"]["id"]},
stream=True,
)
r.raise_for_status()
if body["stream"]:
return r.iter_lines()
else:
return r.json()
except Exception as e:
return f"Error: {e}"