pipelines/examples/llamaindex_ollama_pipeline.py
Timothy J. Baek 0494004f5c fix
2024-05-21 16:07:08 -07:00

34 lines
1.0 KiB
Python

from typing import List, Union, Generator
from schemas import OpenAIChatMessage
from llama_index.embeddings.ollama import OllamaEmbedding
from llama_index.llms.ollama import Ollama
from llama_index.core import Settings
Settings.embed_model = OllamaEmbedding(
model_name="nomic-embed-text",
base_url="http://localhost:11434",
)
Settings.llm = Ollama(model="llama3")
from llama_index.core import VectorStoreIndex, SimpleDirectoryReader
documents = SimpleDirectoryReader("./data").load_data()
index = VectorStoreIndex.from_documents(documents)
def get_response(
user_message: str, messages: List[OpenAIChatMessage]
) -> Union[str, Generator]:
# This is where you can add your custom RAG pipeline.
# Typically, you would retrieve relevant information from your knowledge base and synthesize it to generate a response.
print(messages)
print(user_message)
query_engine = index.as_query_engine(streaming=True)
response = query_engine.query(user_message)
return response.response_gen