""" title: Llama Index Pipeline author: open-webui date: 2024-05-30 version: 1.0 license: MIT description: A pipeline for retrieving relevant information from a knowledge base using the Llama Index library. requirements: llama-index """ from typing import List, Union, Generator, Iterator from schemas import OpenAIChatMessage class Pipeline: def __init__(self): self.documents = None self.index = None async def on_startup(self): import os # Set the OpenAI API key os.environ["OPENAI_API_KEY"] = "your-api-key-here" from llama_index.core import VectorStoreIndex, SimpleDirectoryReader self.documents = SimpleDirectoryReader("./data").load_data() self.index = VectorStoreIndex.from_documents(self.documents) # This function is called when the server is started. pass async def on_shutdown(self): # This function is called when the server is stopped. pass def pipe( self, user_message: str, model_id: str, messages: List[dict], body: dict ) -> Union[str, Generator, Iterator]: # This is where you can add your custom RAG pipeline. # Typically, you would retrieve relevant information from your knowledge base and synthesize it to generate a response. print(messages) print(user_message) query_engine = self.index.as_query_engine(streaming=True) response = query_engine.query(user_message) return response.response_gen