""" title: Llama Index Ollama Pipeline author: open-webui date: 2024-05-30 version: 1.0 license: MIT description: A pipeline for retrieving relevant information from a knowledge base using the Llama Index library with Ollama embeddings. requirements: llama-index, llama-index-llms-ollama, llama-index-embeddings-ollama """ from typing import List, Union, Generator, Iterator from schemas import OpenAIChatMessage class Pipeline: def __init__(self): self.documents = None self.index = None async def on_startup(self): from llama_index.embeddings.ollama import OllamaEmbedding from llama_index.llms.ollama import Ollama from llama_index.core import Settings, VectorStoreIndex, SimpleDirectoryReader Settings.embed_model = OllamaEmbedding( model_name="nomic-embed-text", base_url="http://localhost:11434", ) Settings.llm = Ollama(model="llama3") # This function is called when the server is started. global documents, index self.documents = SimpleDirectoryReader("./data").load_data() self.index = VectorStoreIndex.from_documents(self.documents) pass async def on_shutdown(self): # This function is called when the server is stopped. pass def pipe( self, user_message: str, model_id: str, messages: List[dict], body: dict ) -> Union[str, Generator, Iterator]: # This is where you can add your custom RAG pipeline. # Typically, you would retrieve relevant information from your knowledge base and synthesize it to generate a response. print(messages) print(user_message) query_engine = self.index.as_query_engine(streaming=True) response = query_engine.query(user_message) return response.response_gen