FROM python:3.11-slim-bookworm as base # Use args ARG USE_CUDA ARG USE_CUDA_VER ## Basis ## ENV ENV=prod \ PORT=9099 \ # pass build args to the build USE_CUDA_DOCKER=${USE_CUDA} \ USE_CUDA_DOCKER_VER=${USE_CUDA_VER} # Install GCC and build tools RUN apt-get update && \ apt-get install -y gcc build-essential curl git && \ apt-get clean && \ rm -rf /var/lib/apt/lists/* WORKDIR /app # Install Python dependencies COPY ./requirements.txt . RUN pip3 install uv && \ if [ "$USE_CUDA" = "true" ]; then \ pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/$USE_CUDA_DOCKER_VER --no-cache-dir && \ uv pip install --system -r requirements.txt --no-cache-dir; \ else \ pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cpu --no-cache-dir && \ uv pip install --system -r requirements.txt --no-cache-dir; \ fi # Copy the application code COPY . . # Install Rust compiler and ddtrace which are required for DataDog components RUN curl --proto '=https' --tlsv1.2 -sSf https://sh.rustup.rs | sh -s -- -y # Set up the Rust environment ENV PATH="/root/.cargo/bin:${PATH}" RUN /root/.cargo/bin/rustup default stable # DEBUG - check that Rust installed correctly RUN cargo --version # Set the working directory to the Pipelines app dir WORKDIR /app # Install Python dependencies RUN pip3 install git+https://github.com/DataDog/dd-trace-py.git@main # Expose the port ENV HOST="0.0.0.0" ENV PORT="9099" ENTRYPOINT [ "bash", "start.sh" ]