from typing import List, Union, Generator from schemas import OpenAIChatMessage import os # Set the OpenAI API key os.environ["OPENAI_API_KEY"] = "your_openai_api_key_here" from llama_index.core import VectorStoreIndex, SimpleDirectoryReader documents = SimpleDirectoryReader("./data").load_data() index = VectorStoreIndex.from_documents(documents) def get_response( user_message: str, messages: List[OpenAIChatMessage] ) -> Union[str, Generator]: # This is where you can add your custom RAG pipeline. # Typically, you would retrieve relevant information from your knowledge base and synthesize it to generate a response. print(messages) print(user_message) query_engine = index.as_query_engine(streaming=True) response = query_engine.query(user_message) return response.response_gen