mirror of
https://github.com/open-webui/pipelines
synced 2025-05-11 16:10:45 +00:00
Create haystack_pipeline.py
This commit is contained in:
parent
025813d392
commit
f2630aa9de
91
examples/haystack_pipeline.py
Normal file
91
examples/haystack_pipeline.py
Normal file
@ -0,0 +1,91 @@
|
||||
from typing import List, Union, Generator
|
||||
from schemas import OpenAIChatMessage
|
||||
import os
|
||||
|
||||
|
||||
os.environ["OPENAI_API_KEY"] = "your_openai_api_key_here"
|
||||
|
||||
from haystack.components.embedders import SentenceTransformersDocumentEmbedder
|
||||
from haystack.components.embedders import SentenceTransformersTextEmbedder
|
||||
from haystack.components.retrievers.in_memory import InMemoryEmbeddingRetriever
|
||||
from haystack.components.builders import PromptBuilder
|
||||
from haystack.components.generators import OpenAIGenerator
|
||||
|
||||
from haystack.document_stores.in_memory import InMemoryDocumentStore
|
||||
|
||||
|
||||
from datasets import load_dataset
|
||||
from haystack import Document
|
||||
from haystack import Pipeline
|
||||
|
||||
|
||||
document_store = InMemoryDocumentStore()
|
||||
|
||||
dataset = load_dataset("bilgeyucel/seven-wonders", split="train")
|
||||
docs = [Document(content=doc["content"], meta=doc["meta"]) for doc in dataset]
|
||||
|
||||
|
||||
doc_embedder = SentenceTransformersDocumentEmbedder(
|
||||
model="sentence-transformers/all-MiniLM-L6-v2"
|
||||
)
|
||||
doc_embedder.warm_up()
|
||||
|
||||
|
||||
docs_with_embeddings = doc_embedder.run(docs)
|
||||
document_store.write_documents(docs_with_embeddings["documents"])
|
||||
|
||||
|
||||
text_embedder = SentenceTransformersTextEmbedder(
|
||||
model="sentence-transformers/all-MiniLM-L6-v2"
|
||||
)
|
||||
|
||||
|
||||
retriever = InMemoryEmbeddingRetriever(document_store)
|
||||
|
||||
|
||||
template = """
|
||||
Given the following information, answer the question.
|
||||
|
||||
Context:
|
||||
{% for document in documents %}
|
||||
{{ document.content }}
|
||||
{% endfor %}
|
||||
|
||||
Question: {{question}}
|
||||
Answer:
|
||||
"""
|
||||
|
||||
prompt_builder = PromptBuilder(template=template)
|
||||
|
||||
|
||||
generator = OpenAIGenerator(model="gpt-3.5-turbo")
|
||||
|
||||
|
||||
basic_rag_pipeline = Pipeline()
|
||||
# Add components to your pipeline
|
||||
basic_rag_pipeline.add_component("text_embedder", text_embedder)
|
||||
basic_rag_pipeline.add_component("retriever", retriever)
|
||||
basic_rag_pipeline.add_component("prompt_builder", prompt_builder)
|
||||
basic_rag_pipeline.add_component("llm", generator)
|
||||
|
||||
# Now, connect the components to each other
|
||||
basic_rag_pipeline.connect("text_embedder.embedding", "retriever.query_embedding")
|
||||
basic_rag_pipeline.connect("retriever", "prompt_builder.documents")
|
||||
basic_rag_pipeline.connect("prompt_builder", "llm")
|
||||
|
||||
|
||||
def get_response(
|
||||
user_message: str, messages: List[OpenAIChatMessage]
|
||||
) -> Union[str, Generator]:
|
||||
# This is where you can add your custom RAG pipeline.
|
||||
# Typically, you would retrieve relevant information from your knowledge base and synthesize it to generate a response.
|
||||
|
||||
print(messages)
|
||||
print(user_message)
|
||||
|
||||
question = user_message
|
||||
response = basic_rag_pipeline.run(
|
||||
{"text_embedder": {"text": question}, "prompt_builder": {"question": question}}
|
||||
)
|
||||
|
||||
return response["llm"]["replies"][0]
|
Loading…
Reference in New Issue
Block a user