Merge pull request #470 from kikumoto/feature/update_aws_bedrock_claude_implementation

Feature/update aws bedrock claude implementation
This commit is contained in:
Tim Jaeryang Baek 2025-04-14 08:55:42 -07:00 committed by GitHub
commit ef900c4a3b
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194

View File

@ -12,7 +12,7 @@ import base64
import json
import logging
from io import BytesIO
from typing import List, Union, Generator, Iterator
from typing import List, Union, Generator, Iterator, Optional, Any
import boto3
@ -23,12 +23,23 @@ import requests
from utils.pipelines.main import pop_system_message
REASONING_EFFORT_BUDGET_TOKEN_MAP = {
"none": None,
"low": 1024,
"medium": 4096,
"high": 16384,
"max": 32768,
}
# Maximum combined token limit for Claude 3.7
MAX_COMBINED_TOKENS = 64000
class Pipeline:
class Valves(BaseModel):
AWS_ACCESS_KEY: str = ""
AWS_SECRET_KEY: str = ""
AWS_REGION_NAME: str = ""
AWS_ACCESS_KEY: Optional[str] = None
AWS_SECRET_KEY: Optional[str] = None
AWS_REGION_NAME: Optional[str] = None
def __init__(self):
self.type = "manifold"
@ -47,21 +58,25 @@ class Pipeline:
}
)
self.bedrock = boto3.client(aws_access_key_id=self.valves.AWS_ACCESS_KEY,
aws_secret_access_key=self.valves.AWS_SECRET_KEY,
service_name="bedrock",
region_name=self.valves.AWS_REGION_NAME)
self.bedrock_runtime = boto3.client(aws_access_key_id=self.valves.AWS_ACCESS_KEY,
aws_secret_access_key=self.valves.AWS_SECRET_KEY,
service_name="bedrock-runtime",
region_name=self.valves.AWS_REGION_NAME)
self.valves = self.Valves(
**{
"AWS_ACCESS_KEY": os.getenv("AWS_ACCESS_KEY", ""),
"AWS_SECRET_KEY": os.getenv("AWS_SECRET_KEY", ""),
"AWS_REGION_NAME": os.getenv(
"AWS_REGION_NAME", os.getenv(
"AWS_REGION", os.getenv("AWS_DEFAULT_REGION", "")
)
),
}
)
self.pipelines = self.get_models()
self.update_pipelines()
async def on_startup(self):
# This function is called when the server is started.
print(f"on_startup:{__name__}")
self.update_pipelines()
pass
async def on_shutdown(self):
@ -72,40 +87,58 @@ class Pipeline:
async def on_valves_updated(self):
# This function is called when the valves are updated.
print(f"on_valves_updated:{__name__}")
self.bedrock = boto3.client(aws_access_key_id=self.valves.AWS_ACCESS_KEY,
self.update_pipelines()
def update_pipelines(self) -> None:
try:
self.bedrock = boto3.client(service_name="bedrock",
aws_access_key_id=self.valves.AWS_ACCESS_KEY,
aws_secret_access_key=self.valves.AWS_SECRET_KEY,
service_name="bedrock",
region_name=self.valves.AWS_REGION_NAME)
self.bedrock_runtime = boto3.client(aws_access_key_id=self.valves.AWS_ACCESS_KEY,
self.bedrock_runtime = boto3.client(service_name="bedrock-runtime",
aws_access_key_id=self.valves.AWS_ACCESS_KEY,
aws_secret_access_key=self.valves.AWS_SECRET_KEY,
service_name="bedrock-runtime",
region_name=self.valves.AWS_REGION_NAME)
self.pipelines = self.get_models()
def pipelines(self) -> List[dict]:
return self.get_models()
except Exception as e:
print(f"Error: {e}")
self.pipelines = [
{
"id": "error",
"name": "Could not fetch models from Bedrock, please set up AWS Key/Secret or Instance/Task Role.",
},
]
def get_models(self):
if self.valves.AWS_ACCESS_KEY and self.valves.AWS_SECRET_KEY:
try:
response = self.bedrock.list_foundation_models(byProvider='Anthropic', byInferenceType='ON_DEMAND')
return [
{
"id": model["modelId"],
"name": model["modelName"],
}
for model in response["modelSummaries"]
]
res = []
response = self.bedrock.list_foundation_models(byProvider='Anthropic')
for model in response['modelSummaries']:
inference_types = model.get('inferenceTypesSupported', [])
if "ON_DEMAND" in inference_types:
res.append({'id': model['modelId'], 'name': model['modelName']})
elif "INFERENCE_PROFILE" in inference_types:
inferenceProfileId = self.getInferenceProfileId(model['modelArn'])
if inferenceProfileId:
res.append({'id': inferenceProfileId, 'name': model['modelName']})
return res
except Exception as e:
print(f"Error: {e}")
return [
{
"id": "error",
"name": "Could not fetch models from Bedrock, please update the Access/Secret Key in the valves.",
"name": "Could not fetch models from Bedrock, please check permissoin.",
},
]
else:
return []
def getInferenceProfileId(self, modelArn: str) -> str:
response = self.bedrock.list_inference_profiles()
for profile in response.get('inferenceProfileSummaries', []):
for model in profile.get('models', []):
if model.get('modelArn') == modelArn:
return profile['inferenceProfileId']
return None
def pipe(
self, user_message: str, model_id: str, messages: List[dict], body: dict
@ -139,11 +172,53 @@ class Pipeline:
payload = {"modelId": model_id,
"messages": processed_messages,
"system": [{'text': system_message if system_message else 'you are an intelligent ai assistant'}],
"inferenceConfig": {"temperature": body.get("temperature", 0.5)},
"additionalModelRequestFields": {"top_k": body.get("top_k", 200), "top_p": body.get("top_p", 0.9)}
"system": [{'text': system_message["content"] if system_message else 'you are an intelligent ai assistant'}],
"inferenceConfig": {
"temperature": body.get("temperature", 0.5),
"topP": body.get("top_p", 0.9),
"maxTokens": body.get("max_tokens", 4096),
"stopSequences": body.get("stop", []),
},
"additionalModelRequestFields": {"top_k": body.get("top_k", 200)}
}
if body.get("stream", False):
supports_thinking = "claude-3-7" in model_id
reasoning_effort = body.get("reasoning_effort", "none")
budget_tokens = REASONING_EFFORT_BUDGET_TOKEN_MAP.get(reasoning_effort)
# Allow users to input an integer value representing budget tokens
if (
not budget_tokens
and reasoning_effort not in REASONING_EFFORT_BUDGET_TOKEN_MAP.keys()
):
try:
budget_tokens = int(reasoning_effort)
except ValueError as e:
print("Failed to convert reasoning effort to int", e)
budget_tokens = None
if supports_thinking and budget_tokens:
# Check if the combined tokens (budget_tokens + max_tokens) exceeds the limit
max_tokens = payload.get("max_tokens", 4096)
combined_tokens = budget_tokens + max_tokens
if combined_tokens > MAX_COMBINED_TOKENS:
error_message = f"Error: Combined tokens (budget_tokens {budget_tokens} + max_tokens {max_tokens} = {combined_tokens}) exceeds the maximum limit of {MAX_COMBINED_TOKENS}"
print(error_message)
return error_message
payload["inferenceConfig"]["maxTokens"] = combined_tokens
payload["additionalModelRequestFields"]["thinking"] = {
"type": "enabled",
"budget_tokens": budget_tokens,
}
# Thinking requires temperature 1.0 and does not support top_p, top_k
payload["inferenceConfig"]["temperature"] = 1.0
if "top_k" in payload["additionalModelRequestFields"]:
del payload["additionalModelRequestFields"]["top_k"]
if "topP" in payload["inferenceConfig"]:
del payload["inferenceConfig"]["topP"]
return self.stream_response(model_id, payload)
else:
return self.get_completion(model_id, payload)
@ -152,30 +227,45 @@ class Pipeline:
def process_image(self, image: str):
img_stream = None
if image["url"].startswith("data:image"):
if ',' in image["url"]:
base64_string = image["url"].split(',')[1]
image_data = base64.b64decode(base64_string)
content_type = None
if image["url"].startswith("data:image"):
mime_type, base64_string = image["url"].split(",", 1)
content_type = mime_type.split(":")[1].split(";")[0]
image_data = base64.b64decode(base64_string)
img_stream = BytesIO(image_data)
else:
img_stream = requests.get(image["url"]).content
response = requests.get(image["url"])
img_stream = BytesIO(response.content)
content_type = response.headers.get('Content-Type', 'image/jpeg')
media_type = content_type.split('/')[-1] if '/' in content_type else content_type
return {
"image": {"format": "png" if image["url"].endswith(".png") else "jpeg",
"source": {"bytes": img_stream.read()}}
"image": {
"format": media_type,
"source": {"bytes": img_stream.read()}
}
}
def stream_response(self, model_id: str, payload: dict) -> Generator:
if "system" in payload:
del payload["system"]
if "additionalModelRequestFields" in payload:
del payload["additionalModelRequestFields"]
streaming_response = self.bedrock_runtime.converse_stream(**payload)
in_resasoning_context = False
for chunk in streaming_response["stream"]:
if "contentBlockDelta" in chunk:
if in_resasoning_context and "contentBlockStop" in chunk:
in_resasoning_context = False
yield "\n </think> \n\n"
elif "contentBlockDelta" in chunk and "delta" in chunk["contentBlockDelta"]:
if "reasoningContent" in chunk["contentBlockDelta"]["delta"]:
if not in_resasoning_context:
yield "<think>"
in_resasoning_context = True
if "text" in chunk["contentBlockDelta"]["delta"]["reasoningContent"]:
yield chunk["contentBlockDelta"]["delta"]["reasoningContent"]["text"]
elif "text" in chunk["contentBlockDelta"]["delta"]:
yield chunk["contentBlockDelta"]["delta"]["text"]
def get_completion(self, model_id: str, payload: dict) -> str:
response = self.bedrock_runtime.converse(**payload)
return response['output']['message']['content'][0]['text']