mirror of
https://github.com/open-webui/pipelines
synced 2025-05-14 17:35:45 +00:00
feat: multi-pipeline support
This commit is contained in:
parent
92890701f0
commit
eaa4112f46
64
main.py
64
main.py
@ -1,4 +1,4 @@
|
||||
from fastapi import FastAPI, Request, Depends, status
|
||||
from fastapi import FastAPI, Request, Depends, status, HTTPException
|
||||
from fastapi.middleware.cors import CORSMiddleware
|
||||
|
||||
from starlette.responses import StreamingResponse, Response
|
||||
@ -14,20 +14,50 @@ from utils import get_last_user_message, stream_message_template
|
||||
from schemas import OpenAIChatCompletionForm
|
||||
from config import MODEL_ID, MODEL_NAME
|
||||
|
||||
from pipelines.pipeline import (
|
||||
get_response,
|
||||
on_startup,
|
||||
on_shutdown,
|
||||
)
|
||||
import os
|
||||
import importlib.util
|
||||
|
||||
|
||||
PIPELINES = {}
|
||||
|
||||
|
||||
def load_modules_from_directory(directory):
|
||||
for filename in os.listdir(directory):
|
||||
if filename.endswith(".py"):
|
||||
module_name = filename[:-3] # Remove the .py extension
|
||||
module_path = os.path.join(directory, filename)
|
||||
spec = importlib.util.spec_from_file_location(module_name, module_path)
|
||||
module = importlib.util.module_from_spec(spec)
|
||||
spec.loader.exec_module(module)
|
||||
yield module
|
||||
|
||||
|
||||
for loaded_module in load_modules_from_directory("./pipelines"):
|
||||
# Do something with the loaded module
|
||||
print("Loaded:", loaded_module.__name__)
|
||||
PIPELINES[loaded_module.__name__] = {
|
||||
"module": loaded_module,
|
||||
"id": loaded_module.__name__,
|
||||
"name": loaded_module.__name__,
|
||||
}
|
||||
|
||||
|
||||
from contextlib import asynccontextmanager
|
||||
|
||||
|
||||
@asynccontextmanager
|
||||
async def lifespan(app: FastAPI):
|
||||
await on_startup()
|
||||
for pipeline in PIPELINES.values():
|
||||
if hasattr(pipeline["module"], "on_startup"):
|
||||
info = await pipeline["module"].on_startup()
|
||||
if info:
|
||||
pipeline["id"] = info["id"]
|
||||
pipeline["name"] = info["name"]
|
||||
yield
|
||||
await on_shutdown()
|
||||
|
||||
for pipeline in PIPELINES.values():
|
||||
if hasattr(pipeline["module"], "on_shutdown"):
|
||||
await pipeline["module"].on_shutdown()
|
||||
|
||||
|
||||
app = FastAPI(docs_url="/docs", redoc_url=None, lifespan=lifespan)
|
||||
@ -59,17 +89,18 @@ async def check_url(request: Request, call_next):
|
||||
@app.get("/v1/models")
|
||||
async def get_models():
|
||||
"""
|
||||
Returns the model that is available inside Dialog in the OpenAI format.
|
||||
Returns the available pipelines
|
||||
"""
|
||||
return {
|
||||
"data": [
|
||||
{
|
||||
"id": MODEL_ID,
|
||||
"name": MODEL_NAME,
|
||||
"id": pipeline["id"],
|
||||
"name": pipeline["name"],
|
||||
"object": "model",
|
||||
"created": int(time.time()),
|
||||
"owned_by": "openai",
|
||||
}
|
||||
for pipeline in PIPELINES.values()
|
||||
]
|
||||
}
|
||||
|
||||
@ -79,9 +110,18 @@ async def get_models():
|
||||
async def generate_openai_chat_completion(form_data: OpenAIChatCompletionForm):
|
||||
user_message = get_last_user_message(form_data.messages)
|
||||
|
||||
if form_data.model not in PIPELINES:
|
||||
return HTTPException(
|
||||
status_code=status.HTTP_404_NOT_FOUND,
|
||||
detail=f"Model {form_data.model} not found",
|
||||
)
|
||||
|
||||
get_response = PIPELINES[form_data.model]["module"].get_response
|
||||
|
||||
if form_data.stream:
|
||||
|
||||
def stream_content():
|
||||
|
||||
res = get_response(user_message, messages=form_data.messages)
|
||||
|
||||
if isinstance(res, str):
|
||||
@ -108,9 +148,7 @@ async def generate_openai_chat_completion(form_data: OpenAIChatCompletionForm):
|
||||
|
||||
return StreamingResponse(stream_content(), media_type="text/event-stream")
|
||||
else:
|
||||
|
||||
res = get_response(user_message, messages=form_data.messages)
|
||||
|
||||
message = ""
|
||||
|
||||
if isinstance(res, str):
|
||||
|
29
pipelines/examples/pipeline.py
Normal file
29
pipelines/examples/pipeline.py
Normal file
@ -0,0 +1,29 @@
|
||||
from typing import List, Union, Generator
|
||||
from schemas import OpenAIChatMessage
|
||||
|
||||
|
||||
def get_response(
|
||||
user_message: str, messages: List[OpenAIChatMessage]
|
||||
) -> Union[str, Generator]:
|
||||
# This is where you can add your custom pipelines like RAG.
|
||||
|
||||
print(messages)
|
||||
print(user_message)
|
||||
|
||||
return f"pipeline response to: {user_message}"
|
||||
|
||||
|
||||
async def on_startup():
|
||||
# This function is called when the server is started.
|
||||
print(f"on_startup:{__name__}")
|
||||
|
||||
# Optional: return pipeline metadata
|
||||
# return {
|
||||
# "id": "pipeline_id",
|
||||
# "name": "pipeline_name",
|
||||
# }
|
||||
|
||||
|
||||
async def on_shutdown():
|
||||
# This function is called when the server is stopped.
|
||||
pass
|
@ -10,11 +10,14 @@ def get_response(
|
||||
print(messages)
|
||||
print(user_message)
|
||||
|
||||
return f"rag response to: {user_message}"
|
||||
return f"pipeline response to: {user_message}"
|
||||
|
||||
|
||||
async def on_startup():
|
||||
# This function is called when the server is started.
|
||||
print("onstartup")
|
||||
print(__name__)
|
||||
|
||||
pass
|
||||
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user