mirror of
https://github.com/open-webui/pipelines
synced 2025-05-12 16:40:45 +00:00
feat: detoxify pipeline
This commit is contained in:
parent
9f7be02cd9
commit
e7da7abb92
72
pipelines/examples/detoxify_filter_pipeline.py
Normal file
72
pipelines/examples/detoxify_filter_pipeline.py
Normal file
@ -0,0 +1,72 @@
|
|||||||
|
from typing import List, Optional
|
||||||
|
from schemas import OpenAIChatMessage
|
||||||
|
from pydantic import BaseModel
|
||||||
|
from detoxify import Detoxify
|
||||||
|
import os
|
||||||
|
|
||||||
|
|
||||||
|
class Pipeline:
|
||||||
|
def __init__(self):
|
||||||
|
# Pipeline filters are only compatible with Open WebUI
|
||||||
|
# You can think of filter pipeline as a middleware that can be used to edit the form data before it is sent to the OpenAI API.
|
||||||
|
self.type = "filter"
|
||||||
|
|
||||||
|
# Optionally, you can set the id and name of the pipeline.
|
||||||
|
# Assign a unique identifier to the pipeline.
|
||||||
|
# The identifier must be unique across all pipelines.
|
||||||
|
# The identifier must be an alphanumeric string that can include underscores or hyphens. It cannot contain spaces, special characters, slashes, or backslashes.
|
||||||
|
self.id = "detoxify_filter_pipeline"
|
||||||
|
self.name = "Detoxify Filter"
|
||||||
|
|
||||||
|
class Valves(BaseModel):
|
||||||
|
# List target pipeline ids (models) that this filter will be connected to.
|
||||||
|
# If you want to connect this filter to all pipelines, you can set pipelines to ["*"]
|
||||||
|
# e.g. ["llama3:latest", "gpt-3.5-turbo"]
|
||||||
|
pipelines: List[str] = []
|
||||||
|
|
||||||
|
# Assign a priority level to the filter pipeline.
|
||||||
|
# The priority level determines the order in which the filter pipelines are executed.
|
||||||
|
# The lower the number, the higher the priority.
|
||||||
|
priority: int = 0
|
||||||
|
|
||||||
|
# Initialize
|
||||||
|
self.valves = Valves(
|
||||||
|
**{
|
||||||
|
"pipelines": ["*"], # Connect to all pipelines
|
||||||
|
}
|
||||||
|
)
|
||||||
|
|
||||||
|
self.model = None
|
||||||
|
|
||||||
|
pass
|
||||||
|
|
||||||
|
async def on_startup(self):
|
||||||
|
# This function is called when the server is started.
|
||||||
|
print(f"on_startup:{__name__}")
|
||||||
|
|
||||||
|
self.model = Detoxify("original")
|
||||||
|
pass
|
||||||
|
|
||||||
|
async def on_shutdown(self):
|
||||||
|
# This function is called when the server is stopped.
|
||||||
|
print(f"on_shutdown:{__name__}")
|
||||||
|
pass
|
||||||
|
|
||||||
|
async def on_valves_update(self):
|
||||||
|
# This function is called when the valves are updated.
|
||||||
|
pass
|
||||||
|
|
||||||
|
async def filter(self, body: dict, user: Optional[dict] = None) -> dict:
|
||||||
|
print(f"filter:{__name__}")
|
||||||
|
|
||||||
|
print(body)
|
||||||
|
user_message = body["messages"][-1]["content"]
|
||||||
|
|
||||||
|
# Filter out toxic messages
|
||||||
|
toxicity = self.model.predict(user_message)
|
||||||
|
print(toxicity)
|
||||||
|
|
||||||
|
if toxicity["toxicity"] > 0.5:
|
||||||
|
raise Exception("Toxic message detected")
|
||||||
|
|
||||||
|
return body
|
Loading…
Reference in New Issue
Block a user