mirror of
https://github.com/open-webui/pipelines
synced 2025-05-10 23:50:45 +00:00
Merge pull request #99 from atgehrhardt/main
Ollama Dynamic Vision Pipeline
This commit is contained in:
commit
df2124e757
91
examples/filters/dynamic_ollama_vision_filter_pipeline.py
Normal file
91
examples/filters/dynamic_ollama_vision_filter_pipeline.py
Normal file
@ -0,0 +1,91 @@
|
|||||||
|
"""
|
||||||
|
title: Ollama Dynamic Vision Pipeline
|
||||||
|
author: Andrew Tait Gehrhardt
|
||||||
|
date: 2024-06-18
|
||||||
|
version: 1.0
|
||||||
|
license: MIT
|
||||||
|
description: A pipeline for dynamically processing images when current model is a text only model
|
||||||
|
requirements: pydantic, aiohttp
|
||||||
|
"""
|
||||||
|
|
||||||
|
from typing import List, Optional
|
||||||
|
from pydantic import BaseModel
|
||||||
|
import json
|
||||||
|
import aiohttp
|
||||||
|
from utils.pipelines.main import get_last_user_message
|
||||||
|
|
||||||
|
class Pipeline:
|
||||||
|
class Valves(BaseModel):
|
||||||
|
pipelines: List[str] = []
|
||||||
|
priority: int = 0
|
||||||
|
vision_model: str = "llava"
|
||||||
|
ollama_base_url: str = ""
|
||||||
|
model_to_override: str = ""
|
||||||
|
|
||||||
|
def __init__(self):
|
||||||
|
self.type = "filter"
|
||||||
|
self.name = "Interception Filter"
|
||||||
|
self.valves = self.Valves(
|
||||||
|
**{
|
||||||
|
"pipelines": ["*"], # Connect to all pipelines
|
||||||
|
}
|
||||||
|
)
|
||||||
|
|
||||||
|
async def on_startup(self):
|
||||||
|
print(f"on_startup:{__name__}")
|
||||||
|
pass
|
||||||
|
|
||||||
|
async def on_shutdown(self):
|
||||||
|
print(f"on_shutdown:{__name__}")
|
||||||
|
pass
|
||||||
|
|
||||||
|
async def process_images_with_llava(self, images: List[str], content: str, vision_model: str, ollama_base_url: str) -> str:
|
||||||
|
url = f"{ollama_base_url}/api/chat"
|
||||||
|
payload = {
|
||||||
|
"model": vision_model,
|
||||||
|
"messages": [
|
||||||
|
{
|
||||||
|
"role": "user",
|
||||||
|
"content": content,
|
||||||
|
"images": images
|
||||||
|
}
|
||||||
|
]
|
||||||
|
}
|
||||||
|
|
||||||
|
async with aiohttp.ClientSession() as session:
|
||||||
|
async with session.post(url, json=payload) as response:
|
||||||
|
if response.status == 200:
|
||||||
|
content = []
|
||||||
|
async for line in response.content:
|
||||||
|
data = json.loads(line)
|
||||||
|
content.append(data.get("message", {}).get("content", ""))
|
||||||
|
return "".join(content)
|
||||||
|
else:
|
||||||
|
print(f"Failed to process images with LLava, status code: {response.status}")
|
||||||
|
return ""
|
||||||
|
|
||||||
|
async def inlet(self, body: dict, user: Optional[dict] = None) -> dict:
|
||||||
|
print(f"pipe:{__name__}")
|
||||||
|
|
||||||
|
images = []
|
||||||
|
|
||||||
|
# Ensure the body is a dictionary
|
||||||
|
if isinstance(body, str):
|
||||||
|
body = json.loads(body)
|
||||||
|
|
||||||
|
model = body.get("model", "")
|
||||||
|
|
||||||
|
# Get the content of the most recent message
|
||||||
|
user_message = get_last_user_message(body["messages"])
|
||||||
|
|
||||||
|
if model in self.valves.model_to_override:
|
||||||
|
messages = body.get("messages", [])
|
||||||
|
for message in messages:
|
||||||
|
if "images" in message:
|
||||||
|
images.extend(message["images"])
|
||||||
|
raw_llava_response = await self.process_images_with_llava(images, user_message, self.valves.vision_model,self.valves.ollama_base_url)
|
||||||
|
llava_response = f"REPEAT THIS BACK: {raw_llava_response}"
|
||||||
|
message["content"] = llava_response
|
||||||
|
message.pop("images", None) # This will safely remove the 'images' key if it exists
|
||||||
|
|
||||||
|
return body
|
Loading…
Reference in New Issue
Block a user