mirror of
https://github.com/open-webui/pipelines
synced 2025-05-10 15:40:55 +00:00
Add filter example of message monitoring using Opik
This commit is contained in:
parent
f89ab37f53
commit
b7debc3b1b
@ -23,6 +23,7 @@ Welcome to **Pipelines**, an [Open WebUI](https://github.com/open-webui) initiat
|
||||
- [**Function Calling Pipeline**](/examples/filters/function_calling_filter_pipeline.py): Easily handle function calls and enhance your applications with custom logic.
|
||||
- [**Custom RAG Pipeline**](/examples/pipelines/rag/llamaindex_pipeline.py): Implement sophisticated Retrieval-Augmented Generation pipelines tailored to your needs.
|
||||
- [**Message Monitoring Using Langfuse**](/examples/filters/langfuse_filter_pipeline.py): Monitor and analyze message interactions in real-time using Langfuse.
|
||||
- [**Message Monitoring Using Opik**](/examples/filters/opik_filter_pipeline.py): Monitor and analyze message interactions using Opik, an open-source platform for debugging and evaluating LLM applications and RAG systems.
|
||||
- [**Rate Limit Filter**](/examples/filters/rate_limit_filter_pipeline.py): Control the flow of requests to prevent exceeding rate limits.
|
||||
- [**Real-Time Translation Filter with LibreTranslate**](/examples/filters/libretranslate_filter_pipeline.py): Seamlessly integrate real-time translations into your LLM interactions.
|
||||
- [**Toxic Message Filter**](/examples/filters/detoxify_filter_pipeline.py): Implement filters to detect and handle toxic messages effectively.
|
||||
|
274
examples/filters/opik_filter_pipeline.py
Normal file
274
examples/filters/opik_filter_pipeline.py
Normal file
@ -0,0 +1,274 @@
|
||||
"""
|
||||
title: Opik Filter Pipeline
|
||||
author: open-webui
|
||||
date: 2025-03-12
|
||||
version: 1.0
|
||||
license: MIT
|
||||
description: A filter pipeline that uses Opik for LLM observability.
|
||||
requirements: opik
|
||||
"""
|
||||
|
||||
from typing import List, Optional
|
||||
import os
|
||||
import uuid
|
||||
import json
|
||||
|
||||
from pydantic import BaseModel
|
||||
from opik import Opik
|
||||
|
||||
|
||||
def get_last_assistant_message_obj(messages: List[dict]) -> dict:
|
||||
for message in reversed(messages):
|
||||
if message["role"] == "assistant":
|
||||
return message
|
||||
return {}
|
||||
|
||||
|
||||
class Pipeline:
|
||||
class Valves(BaseModel):
|
||||
pipelines: List[str] = []
|
||||
priority: int = 0
|
||||
api_key: Optional[str] = None
|
||||
workspace: str
|
||||
project_name: str
|
||||
host: str
|
||||
debug: bool = False
|
||||
|
||||
def __init__(self):
|
||||
self.type = "filter"
|
||||
self.name = "Opik Filter"
|
||||
|
||||
self.valves = self.Valves(
|
||||
**{
|
||||
"pipelines": ["*"],
|
||||
"api_key": os.getenv("OPIK_API_KEY", "set_me_for_opik_cloud"),
|
||||
"workspace": os.getenv("OPIK_WORKSPACE", "default"),
|
||||
"project_name": os.getenv("OPIK_PROJECT_NAME", "default"),
|
||||
"host": os.getenv(
|
||||
"OPIK_URL_OVERRIDE", "https://www.comet.com/opik/api"
|
||||
),
|
||||
"debug": os.getenv("DEBUG_MODE", "false").lower() == "true",
|
||||
}
|
||||
)
|
||||
|
||||
self.opik = None
|
||||
# Keep track of the trace and the last-created span for each chat_id
|
||||
self.chat_traces = {}
|
||||
self.chat_spans = {}
|
||||
|
||||
self.suppressed_logs = set()
|
||||
|
||||
def log(self, message: str, suppress_repeats: bool = False):
|
||||
"""Logs messages to the terminal if debugging is enabled."""
|
||||
if self.valves.debug:
|
||||
if suppress_repeats:
|
||||
if message in self.suppressed_logs:
|
||||
return
|
||||
self.suppressed_logs.add(message)
|
||||
print(f"[DEBUG] {message}")
|
||||
|
||||
async def on_startup(self):
|
||||
self.log(f"on_startup triggered for {__name__}")
|
||||
self.set_opik()
|
||||
|
||||
async def on_shutdown(self):
|
||||
self.log(f"on_shutdown triggered for {__name__}")
|
||||
if self.opik:
|
||||
self.opik.end()
|
||||
|
||||
async def on_valves_updated(self):
|
||||
self.log("Valves updated, resetting Opik client.")
|
||||
if self.opik:
|
||||
self.opik.end()
|
||||
self.set_opik()
|
||||
|
||||
def set_opik(self):
|
||||
try:
|
||||
self.opik = Opik(
|
||||
project_name=self.valves.project_name,
|
||||
workspace=self.valves.workspace,
|
||||
host=self.valves.host,
|
||||
api_key=self.valves.api_key,
|
||||
)
|
||||
self.opik.auth_check()
|
||||
self.log("Opik client initialized successfully.")
|
||||
except Exception as e:
|
||||
print(
|
||||
f"Opik error: {e} Please re-enter your Opik credentials in the pipeline settings."
|
||||
)
|
||||
|
||||
async def inlet(self, body: dict, user: Optional[dict] = None) -> dict:
|
||||
"""
|
||||
Inlet handles the incoming request (usually a user message).
|
||||
- If no trace exists yet for this chat_id, we create a new trace.
|
||||
- If a trace does exist, we simply create a new span for the new user message.
|
||||
"""
|
||||
if self.valves.debug:
|
||||
print(f"[DEBUG] Received request: {json.dumps(body, indent=2)}")
|
||||
|
||||
self.log(f"Inlet function called with body: {body} and user: {user}")
|
||||
|
||||
metadata = body.get("metadata", {})
|
||||
task = metadata.get("task", "")
|
||||
|
||||
# Skip logging tasks for now
|
||||
if task:
|
||||
self.log(f"Skipping {task} task.")
|
||||
return body
|
||||
|
||||
if "chat_id" not in metadata:
|
||||
chat_id = str(uuid.uuid4()) # Regular chat messages
|
||||
self.log(f"Assigned normal chat_id: {chat_id}")
|
||||
|
||||
metadata["chat_id"] = chat_id
|
||||
body["metadata"] = metadata
|
||||
else:
|
||||
chat_id = metadata["chat_id"]
|
||||
|
||||
required_keys = ["model", "messages"]
|
||||
missing_keys = [key for key in required_keys if key not in body]
|
||||
if missing_keys:
|
||||
error_message = (
|
||||
f"Error: Missing keys in the request body: {', '.join(missing_keys)}"
|
||||
)
|
||||
self.log(error_message)
|
||||
raise ValueError(error_message)
|
||||
|
||||
user_email = user.get("email") if user else None
|
||||
|
||||
assert chat_id not in self.chat_traces, (
|
||||
f"There shouldn't be a trace already exists for chat_id {chat_id}"
|
||||
)
|
||||
|
||||
# Create a new trace and span
|
||||
self.log(f"Creating new chat trace for chat_id: {chat_id}")
|
||||
|
||||
# Body copy for traces and span
|
||||
trace_body = body.copy()
|
||||
span_body = body.copy()
|
||||
|
||||
# Extract metadata from body
|
||||
metadata = trace_body.pop("metadata", {})
|
||||
metadata.update({"chat_id": chat_id, "user_id": user_email})
|
||||
|
||||
# We don't need the model at the trace level
|
||||
trace_body.pop("model", None)
|
||||
|
||||
trace_payload = {
|
||||
"name": f"{__name__}",
|
||||
"input": trace_body,
|
||||
"metadata": metadata,
|
||||
"thread_id": chat_id,
|
||||
}
|
||||
|
||||
if self.valves.debug:
|
||||
print(f"[DEBUG] Opik trace request: {json.dumps(trace_payload, indent=2)}")
|
||||
|
||||
trace = self.opik.trace(**trace_payload)
|
||||
|
||||
span_metadata = metadata.copy()
|
||||
span_metadata.update({"interface": "open-webui"})
|
||||
|
||||
# Extract the model from body
|
||||
span_body.pop("model", None)
|
||||
# We don't need the metadata in the input for the span
|
||||
span_body.pop("metadata", None)
|
||||
|
||||
# Extract the model and provider from metadata
|
||||
model = span_metadata.get("model", {}).get("id", None)
|
||||
provider = span_metadata.get("model", {}).get("owned_by", None)
|
||||
|
||||
span_payload = {
|
||||
"name": chat_id,
|
||||
"model": model,
|
||||
"provider": provider,
|
||||
"input": span_body,
|
||||
"metadata": span_metadata,
|
||||
"type": "llm",
|
||||
}
|
||||
|
||||
if self.valves.debug:
|
||||
print(f"[DEBUG] Opik span request: {json.dumps(span_payload, indent=2)}")
|
||||
|
||||
span = trace.span(**span_payload)
|
||||
|
||||
self.chat_traces[chat_id] = trace
|
||||
self.chat_spans[chat_id] = span
|
||||
self.log(f"Trace and span objects successfully created for chat_id: {chat_id}")
|
||||
|
||||
return body
|
||||
|
||||
async def outlet(self, body: dict, user: Optional[dict] = None) -> dict:
|
||||
"""
|
||||
Outlet handles the response body (usually the assistant message).
|
||||
It will finalize/end the span created for the user request.
|
||||
"""
|
||||
self.log(f"Outlet function called with body: {body}")
|
||||
|
||||
chat_id = body.get("chat_id")
|
||||
|
||||
# If no trace or span exist, attempt to register again
|
||||
if chat_id not in self.chat_traces or chat_id not in self.chat_spans:
|
||||
self.log(
|
||||
f"[WARNING] No matching chat trace found for chat_id: {chat_id}, chat won't be logged."
|
||||
)
|
||||
return body
|
||||
|
||||
trace = self.chat_traces[chat_id]
|
||||
span = self.chat_spans[chat_id]
|
||||
|
||||
# Body copy for traces and span
|
||||
trace_body = body.copy()
|
||||
span_body = body.copy()
|
||||
|
||||
# Get the last assistant message from the conversation
|
||||
assistant_message_obj = get_last_assistant_message_obj(body["messages"])
|
||||
|
||||
# Extract usage if available
|
||||
usage = None
|
||||
self.log(f"Assistant message obj: {assistant_message_obj}")
|
||||
if assistant_message_obj:
|
||||
message_usage = assistant_message_obj.get("usage", {})
|
||||
if isinstance(message_usage, dict):
|
||||
input_tokens = message_usage.get(
|
||||
"prompt_eval_count"
|
||||
) or message_usage.get("prompt_tokens")
|
||||
output_tokens = message_usage.get("eval_count") or message_usage.get(
|
||||
"completion_tokens"
|
||||
)
|
||||
if input_tokens is not None and output_tokens is not None:
|
||||
usage = {
|
||||
"prompt_tokens": input_tokens,
|
||||
"completion_tokens": output_tokens,
|
||||
"total_tokens": input_tokens + output_tokens,
|
||||
}
|
||||
self.log(f"Usage data extracted: {usage}")
|
||||
|
||||
# Chat_id is already logged as trace thread
|
||||
span_body.pop("chat_id", None)
|
||||
|
||||
# End the span with the final assistant message and updated conversation
|
||||
span_payload = {
|
||||
"output": span_body, # include the entire conversation
|
||||
"usage": usage,
|
||||
}
|
||||
|
||||
if self.valves.debug:
|
||||
print(
|
||||
f"[DEBUG] Opik span end request: {json.dumps(span_payload, indent=2)}"
|
||||
)
|
||||
|
||||
span.end(**span_payload)
|
||||
self.log(f"span ended for chat_id: {chat_id}")
|
||||
|
||||
# Chat_id is already logged as trace thread
|
||||
span_body.pop("chat_id", None)
|
||||
|
||||
# Optionally update the trace with the final assistant output
|
||||
trace.end(output=trace_body)
|
||||
|
||||
# Force the creation of a new trace and span for the next chat even if they are part of the same thread
|
||||
del self.chat_traces[chat_id]
|
||||
del self.chat_spans[chat_id]
|
||||
|
||||
return body
|
@ -32,6 +32,7 @@ psycopg2-binary
|
||||
# Observability
|
||||
langfuse
|
||||
ddtrace
|
||||
opik
|
||||
|
||||
# ML libraries
|
||||
torch
|
||||
|
Loading…
Reference in New Issue
Block a user