diff --git a/examples/pipelines/providers/aws_bedrock_deepseek_pipeline.py b/examples/pipelines/providers/aws_bedrock_deepseek_pipeline.py
new file mode 100644
index 0000000..310958a
--- /dev/null
+++ b/examples/pipelines/providers/aws_bedrock_deepseek_pipeline.py
@@ -0,0 +1,174 @@
+"""
+title: AWS Bedrock DeepSeek Pipeline
+author: kikumoto
+date: 2025-03-17
+version: 1.0
+license: MIT
+description: A pipeline for generating text using the AWS Bedrock API.
+requirements: boto3
+environment_variables: 
+"""
+
+import json
+import logging
+
+from typing import List, Union, Generator, Iterator, Dict, Optional, Any
+
+import boto3
+
+from pydantic import BaseModel
+
+import os
+
+from utils.pipelines.main import pop_system_message
+
+class Pipeline:
+    class Valves(BaseModel):
+        AWS_ACCESS_KEY: Optional[str] = None
+        AWS_SECRET_KEY: Optional[str] = None
+        AWS_REGION_NAME: Optional[str] = None
+
+    def __init__(self):
+        self.type = "manifold"
+        self.name = "Bedrock DeepSeek: "
+
+        self.valves = self.Valves(
+            **{
+                "AWS_ACCESS_KEY": os.getenv("AWS_ACCESS_KEY", ""),
+                "AWS_SECRET_KEY": os.getenv("AWS_SECRET_KEY", ""),
+                "AWS_REGION_NAME": os.getenv(
+                    "AWS_REGION_NAME", os.getenv(
+                        "AWS_REGION", os.getenv("AWS_DEFAULT_REGION", "")
+                    )
+                ),
+            }
+        )
+
+        self.update_pipelines()
+
+    async def on_startup(self):
+        # This function is called when the server is started.
+        print(f"on_startup:{__name__}")
+        self.update_pipelines()
+        pass
+
+    async def on_shutdown(self):
+        # This function is called when the server is stopped.
+        print(f"on_shutdown:{__name__}")
+        pass
+
+    async def on_valves_updated(self):
+        # This function is called when the valves are updated.
+        print(f"on_valves_updated:{__name__}")
+        self.update_pipelines()
+
+    def update_pipelines(self) -> None:
+        try:
+            self.bedrock = boto3.client(service_name="bedrock",
+                                        aws_access_key_id=self.valves.AWS_ACCESS_KEY,
+                                        aws_secret_access_key=self.valves.AWS_SECRET_KEY,
+                                        region_name=self.valves.AWS_REGION_NAME)
+            self.bedrock_runtime = boto3.client(service_name="bedrock-runtime",
+                                                aws_access_key_id=self.valves.AWS_ACCESS_KEY,
+                                                aws_secret_access_key=self.valves.AWS_SECRET_KEY,
+                                                region_name=self.valves.AWS_REGION_NAME)
+            self.pipelines = self.get_models()
+        except Exception as e:
+            print(f"Error: {e}")
+            self.pipelines = [
+                {
+                    "id": "error",
+                    "name": "Could not fetch models from Bedrock, please set up AWS Key/Secret or Instance/Task Role.",
+                },
+            ]
+
+    def pipelines(self) -> List[dict]:
+        return self.get_models()
+
+    def get_models(self):
+        try:
+            res = []
+            response = self.bedrock.list_foundation_models(byProvider='DeepSeek')
+            for model in response['modelSummaries']:
+                inference_types = model.get('inferenceTypesSupported', [])
+                if "ON_DEMAND" in inference_types:
+                    res.append({'id': model['modelId'], 'name': model['modelName']})
+                elif "INFERENCE_PROFILE" in inference_types:
+                    inferenceProfileId = self.getInferenceProfileId(model['modelArn'])
+                    if inferenceProfileId:
+                        res.append({'id': inferenceProfileId, 'name': model['modelName']})
+
+            return res
+        except Exception as e:
+            print(f"Error: {e}")
+            return [
+                {
+                    "id": "error",
+                    "name": "Could not fetch models from Bedrock, please check permissoin.",
+                },
+            ]
+
+    def getInferenceProfileId(self, modelArn: str) -> str:
+        response = self.bedrock.list_inference_profiles()
+        for profile in response.get('inferenceProfileSummaries', []):
+            for model in profile.get('models', []):
+                if model.get('modelArn') == modelArn:
+                    return profile['inferenceProfileId']
+        return None
+
+    def pipe(
+        self, user_message: str, model_id: str, messages: List[dict], body: dict
+    ) -> Union[str, Generator, Iterator]:
+        # This is where you can add your custom pipelines like RAG.
+        print(f"pipe:{__name__}")
+
+        try:
+            # Remove unnecessary keys
+            for key in ['user', 'chat_id', 'title']:
+                body.pop(key, None)
+
+            system_message, messages = pop_system_message(messages)
+
+            logging.info(f"pop_system_message: {json.dumps(messages)}")
+
+            processed_messages = []
+            for message in messages:
+                processed_content = []
+                if isinstance(message.get("content"), list):
+                    for item in message["content"]:
+                        # DeepSeek currently doesn't support multi-modal inputs
+                        if item["type"] == "text":
+                            processed_content.append({"text": item["text"]})
+                else:
+                    processed_content = [{"text": message.get("content", "")}]
+
+                processed_messages.append({"role": message["role"], "content": processed_content})
+
+            payload = {"modelId": model_id,
+                       "system": [{'text': system_message["content"] if system_message else 'you are an intelligent ai assistant'}],
+                       "messages": processed_messages,
+                       "inferenceConfig": {
+                           "temperature": body.get("temperature", 0.5),
+                           "topP": body.get("top_p", 0.9),
+                           "maxTokens": body.get("max_tokens", 8192),
+                           "stopSequences": body.get("stop", []),
+                        },
+                       }
+
+            if body.get("stream", False):
+                return self.stream_response(model_id, payload)
+            else:
+                return self.get_completion(model_id, payload)
+
+        except Exception as e:
+            return f"Error: {e}"
+
+    def stream_response(self, model_id: str, payload: dict) -> Generator:
+        streaming_response = self.bedrock_runtime.converse_stream(**payload)
+        for chunk in streaming_response["stream"]:
+            if "contentBlockDelta" in chunk and "text" in chunk["contentBlockDelta"]["delta"]:
+                yield chunk["contentBlockDelta"]["delta"]["text"]
+
+    def get_completion(self, model_id: str, payload: dict) -> str:
+        response = self.bedrock_runtime.converse(**payload)
+        return response['output']['message']['content'][0]['text']
\ No newline at end of file