mirror of
https://github.com/open-webui/pipelines
synced 2025-05-11 08:01:08 +00:00
threshold fix
This commit is contained in:
parent
c381ea0b64
commit
70d408da45
@ -1,83 +0,0 @@
|
||||
"""
|
||||
title: LLM Guard Filter Pipeline
|
||||
author: jannikstdl
|
||||
date: 2024-05-30
|
||||
version: 1.0
|
||||
license: MIT
|
||||
description: A pipeline for filtering out potential prompt injections using the LLM Guard library.
|
||||
requirements: llm-guard
|
||||
"""
|
||||
|
||||
from typing import List, Optional
|
||||
from schemas import OpenAIChatMessage
|
||||
from pydantic import BaseModel
|
||||
from llm_guard.input_scanners import PromptInjection
|
||||
from llm_guard.input_scanners.prompt_injection import MatchType
|
||||
import os
|
||||
|
||||
|
||||
class Pipeline:
|
||||
def __init__(self):
|
||||
# Pipeline filters are only compatible with Open WebUI
|
||||
# You can think of filter pipeline as a middleware that can be used to edit the form data before it is sent to the OpenAI API.
|
||||
self.type = "filter"
|
||||
|
||||
# Optionally, you can set the id and name of the pipeline.
|
||||
# Assign a unique identifier to the pipeline.
|
||||
# The identifier must be unique across all pipelines.
|
||||
# The identifier must be an alphanumeric string that can include underscores or hyphens. It cannot contain spaces, special characters, slashes, or backslashes.
|
||||
self.id = "llmguard_prompt_injection_filter_pipeline"
|
||||
self.name = "LLMGuard Prompt Injection Filter"
|
||||
|
||||
class Valves(BaseModel):
|
||||
# List target pipeline ids (models) that this filter will be connected to.
|
||||
# If you want to connect this filter to all pipelines, you can set pipelines to ["*"]
|
||||
# e.g. ["llama3:latest", "gpt-3.5-turbo"]
|
||||
pipelines: List[str] = []
|
||||
|
||||
# Assign a priority level to the filter pipeline.
|
||||
# The priority level determines the order in which the filter pipelines are executed.
|
||||
# The lower the number, the higher the priority.
|
||||
priority: int = 0
|
||||
|
||||
# Initialize
|
||||
self.valves = Valves(
|
||||
**{
|
||||
"pipelines": ["*"], # Connect to all pipelines
|
||||
}
|
||||
)
|
||||
|
||||
self.model = None
|
||||
|
||||
pass
|
||||
|
||||
async def on_startup(self):
|
||||
# This function is called when the server is started.
|
||||
print(f"on_startup:{__name__}")
|
||||
|
||||
self.model = PromptInjection(threshold=0.5, match_type=MatchType.FULL)
|
||||
pass
|
||||
|
||||
async def on_shutdown(self):
|
||||
# This function is called when the server is stopped.
|
||||
print(f"on_shutdown:{__name__}")
|
||||
pass
|
||||
|
||||
async def on_valves_updated(self):
|
||||
# This function is called when the valves are updated.
|
||||
pass
|
||||
|
||||
async def inlet(self, body: dict, user: Optional[dict] = None) -> dict:
|
||||
# This filter is applied to the form data before it is sent to the OpenAI API.
|
||||
print(f"inlet:{__name__}")
|
||||
|
||||
user_message = body["messages"][-1]["content"]
|
||||
|
||||
# Filter out prompt injection messages
|
||||
risk_score = self.model.scan(user_message)
|
||||
print(risk_score)
|
||||
|
||||
if risk_score > 0.8:
|
||||
raise Exception("Prompt injection detected")
|
||||
|
||||
return body
|
Loading…
Reference in New Issue
Block a user