mirror of
https://github.com/open-webui/pipelines
synced 2025-05-12 00:20:48 +00:00
threshold fix
This commit is contained in:
parent
c381ea0b64
commit
70d408da45
@ -1,83 +0,0 @@
|
|||||||
"""
|
|
||||||
title: LLM Guard Filter Pipeline
|
|
||||||
author: jannikstdl
|
|
||||||
date: 2024-05-30
|
|
||||||
version: 1.0
|
|
||||||
license: MIT
|
|
||||||
description: A pipeline for filtering out potential prompt injections using the LLM Guard library.
|
|
||||||
requirements: llm-guard
|
|
||||||
"""
|
|
||||||
|
|
||||||
from typing import List, Optional
|
|
||||||
from schemas import OpenAIChatMessage
|
|
||||||
from pydantic import BaseModel
|
|
||||||
from llm_guard.input_scanners import PromptInjection
|
|
||||||
from llm_guard.input_scanners.prompt_injection import MatchType
|
|
||||||
import os
|
|
||||||
|
|
||||||
|
|
||||||
class Pipeline:
|
|
||||||
def __init__(self):
|
|
||||||
# Pipeline filters are only compatible with Open WebUI
|
|
||||||
# You can think of filter pipeline as a middleware that can be used to edit the form data before it is sent to the OpenAI API.
|
|
||||||
self.type = "filter"
|
|
||||||
|
|
||||||
# Optionally, you can set the id and name of the pipeline.
|
|
||||||
# Assign a unique identifier to the pipeline.
|
|
||||||
# The identifier must be unique across all pipelines.
|
|
||||||
# The identifier must be an alphanumeric string that can include underscores or hyphens. It cannot contain spaces, special characters, slashes, or backslashes.
|
|
||||||
self.id = "llmguard_prompt_injection_filter_pipeline"
|
|
||||||
self.name = "LLMGuard Prompt Injection Filter"
|
|
||||||
|
|
||||||
class Valves(BaseModel):
|
|
||||||
# List target pipeline ids (models) that this filter will be connected to.
|
|
||||||
# If you want to connect this filter to all pipelines, you can set pipelines to ["*"]
|
|
||||||
# e.g. ["llama3:latest", "gpt-3.5-turbo"]
|
|
||||||
pipelines: List[str] = []
|
|
||||||
|
|
||||||
# Assign a priority level to the filter pipeline.
|
|
||||||
# The priority level determines the order in which the filter pipelines are executed.
|
|
||||||
# The lower the number, the higher the priority.
|
|
||||||
priority: int = 0
|
|
||||||
|
|
||||||
# Initialize
|
|
||||||
self.valves = Valves(
|
|
||||||
**{
|
|
||||||
"pipelines": ["*"], # Connect to all pipelines
|
|
||||||
}
|
|
||||||
)
|
|
||||||
|
|
||||||
self.model = None
|
|
||||||
|
|
||||||
pass
|
|
||||||
|
|
||||||
async def on_startup(self):
|
|
||||||
# This function is called when the server is started.
|
|
||||||
print(f"on_startup:{__name__}")
|
|
||||||
|
|
||||||
self.model = PromptInjection(threshold=0.5, match_type=MatchType.FULL)
|
|
||||||
pass
|
|
||||||
|
|
||||||
async def on_shutdown(self):
|
|
||||||
# This function is called when the server is stopped.
|
|
||||||
print(f"on_shutdown:{__name__}")
|
|
||||||
pass
|
|
||||||
|
|
||||||
async def on_valves_updated(self):
|
|
||||||
# This function is called when the valves are updated.
|
|
||||||
pass
|
|
||||||
|
|
||||||
async def inlet(self, body: dict, user: Optional[dict] = None) -> dict:
|
|
||||||
# This filter is applied to the form data before it is sent to the OpenAI API.
|
|
||||||
print(f"inlet:{__name__}")
|
|
||||||
|
|
||||||
user_message = body["messages"][-1]["content"]
|
|
||||||
|
|
||||||
# Filter out prompt injection messages
|
|
||||||
risk_score = self.model.scan(user_message)
|
|
||||||
print(risk_score)
|
|
||||||
|
|
||||||
if risk_score > 0.8:
|
|
||||||
raise Exception("Prompt injection detected")
|
|
||||||
|
|
||||||
return body
|
|
Loading…
Reference in New Issue
Block a user