mirror of
https://github.com/open-webui/pipelines
synced 2025-05-12 08:30:43 +00:00
refac
This commit is contained in:
parent
6b4fba3309
commit
6810ed2166
16
main.py
16
main.py
@ -109,7 +109,7 @@ async def get_models():
|
|||||||
|
|
||||||
@app.post("/chat/completions")
|
@app.post("/chat/completions")
|
||||||
@app.post("/v1/chat/completions")
|
@app.post("/v1/chat/completions")
|
||||||
async def generate_openai_chat_completion(form_data: OpenAIChatCompletionForm):
|
def generate_openai_chat_completion(form_data: OpenAIChatCompletionForm):
|
||||||
user_message = get_last_user_message(form_data.messages)
|
user_message = get_last_user_message(form_data.messages)
|
||||||
|
|
||||||
if form_data.model not in PIPELINES:
|
if form_data.model not in PIPELINES:
|
||||||
@ -119,7 +119,6 @@ async def generate_openai_chat_completion(form_data: OpenAIChatCompletionForm):
|
|||||||
)
|
)
|
||||||
|
|
||||||
def job():
|
def job():
|
||||||
|
|
||||||
get_response = PIPELINES[form_data.model]["module"].get_response
|
get_response = PIPELINES[form_data.model]["module"].get_response
|
||||||
|
|
||||||
if form_data.stream:
|
if form_data.stream:
|
||||||
@ -138,7 +137,7 @@ async def generate_openai_chat_completion(form_data: OpenAIChatCompletionForm):
|
|||||||
yield f"data: {json.dumps(message)}\n\n"
|
yield f"data: {json.dumps(message)}\n\n"
|
||||||
|
|
||||||
finish_message = {
|
finish_message = {
|
||||||
"id": f"rag-{str(uuid.uuid4())}",
|
"id": f"{form_data.model}-{str(uuid.uuid4())}",
|
||||||
"object": "chat.completion.chunk",
|
"object": "chat.completion.chunk",
|
||||||
"created": int(time.time()),
|
"created": int(time.time()),
|
||||||
"model": MODEL_ID,
|
"model": MODEL_ID,
|
||||||
@ -168,7 +167,7 @@ async def generate_openai_chat_completion(form_data: OpenAIChatCompletionForm):
|
|||||||
message = f"{message}{stream}"
|
message = f"{message}{stream}"
|
||||||
|
|
||||||
return {
|
return {
|
||||||
"id": f"rag-{str(uuid.uuid4())}",
|
"id": f"{form_data.model}-{str(uuid.uuid4())}",
|
||||||
"object": "chat.completion",
|
"object": "chat.completion",
|
||||||
"created": int(time.time()),
|
"created": int(time.time()),
|
||||||
"model": MODEL_ID,
|
"model": MODEL_ID,
|
||||||
@ -185,14 +184,7 @@ async def generate_openai_chat_completion(form_data: OpenAIChatCompletionForm):
|
|||||||
],
|
],
|
||||||
}
|
}
|
||||||
|
|
||||||
try:
|
return job()
|
||||||
return await run_in_threadpool(job)
|
|
||||||
except Exception as e:
|
|
||||||
print(e)
|
|
||||||
raise HTTPException(
|
|
||||||
status_code=500,
|
|
||||||
detail="{e}",
|
|
||||||
)
|
|
||||||
|
|
||||||
|
|
||||||
@app.get("/")
|
@app.get("/")
|
||||||
|
@ -2,76 +2,7 @@ from typing import List, Union, Generator
|
|||||||
from schemas import OpenAIChatMessage
|
from schemas import OpenAIChatMessage
|
||||||
import os
|
import os
|
||||||
|
|
||||||
|
global basic_rag_pipeline
|
||||||
os.environ["OPENAI_API_KEY"] = "your_openai_api_key_here"
|
|
||||||
|
|
||||||
from haystack.components.embedders import SentenceTransformersDocumentEmbedder
|
|
||||||
from haystack.components.embedders import SentenceTransformersTextEmbedder
|
|
||||||
from haystack.components.retrievers.in_memory import InMemoryEmbeddingRetriever
|
|
||||||
from haystack.components.builders import PromptBuilder
|
|
||||||
from haystack.components.generators import OpenAIGenerator
|
|
||||||
|
|
||||||
from haystack.document_stores.in_memory import InMemoryDocumentStore
|
|
||||||
|
|
||||||
|
|
||||||
from datasets import load_dataset
|
|
||||||
from haystack import Document
|
|
||||||
from haystack import Pipeline
|
|
||||||
|
|
||||||
|
|
||||||
document_store = InMemoryDocumentStore()
|
|
||||||
|
|
||||||
dataset = load_dataset("bilgeyucel/seven-wonders", split="train")
|
|
||||||
docs = [Document(content=doc["content"], meta=doc["meta"]) for doc in dataset]
|
|
||||||
|
|
||||||
|
|
||||||
doc_embedder = SentenceTransformersDocumentEmbedder(
|
|
||||||
model="sentence-transformers/all-MiniLM-L6-v2"
|
|
||||||
)
|
|
||||||
doc_embedder.warm_up()
|
|
||||||
|
|
||||||
|
|
||||||
docs_with_embeddings = doc_embedder.run(docs)
|
|
||||||
document_store.write_documents(docs_with_embeddings["documents"])
|
|
||||||
|
|
||||||
|
|
||||||
text_embedder = SentenceTransformersTextEmbedder(
|
|
||||||
model="sentence-transformers/all-MiniLM-L6-v2"
|
|
||||||
)
|
|
||||||
|
|
||||||
|
|
||||||
retriever = InMemoryEmbeddingRetriever(document_store)
|
|
||||||
|
|
||||||
|
|
||||||
template = """
|
|
||||||
Given the following information, answer the question.
|
|
||||||
|
|
||||||
Context:
|
|
||||||
{% for document in documents %}
|
|
||||||
{{ document.content }}
|
|
||||||
{% endfor %}
|
|
||||||
|
|
||||||
Question: {{question}}
|
|
||||||
Answer:
|
|
||||||
"""
|
|
||||||
|
|
||||||
prompt_builder = PromptBuilder(template=template)
|
|
||||||
|
|
||||||
|
|
||||||
generator = OpenAIGenerator(model="gpt-3.5-turbo")
|
|
||||||
|
|
||||||
|
|
||||||
basic_rag_pipeline = Pipeline()
|
|
||||||
# Add components to your pipeline
|
|
||||||
basic_rag_pipeline.add_component("text_embedder", text_embedder)
|
|
||||||
basic_rag_pipeline.add_component("retriever", retriever)
|
|
||||||
basic_rag_pipeline.add_component("prompt_builder", prompt_builder)
|
|
||||||
basic_rag_pipeline.add_component("llm", generator)
|
|
||||||
|
|
||||||
# Now, connect the components to each other
|
|
||||||
basic_rag_pipeline.connect("text_embedder.embedding", "retriever.query_embedding")
|
|
||||||
basic_rag_pipeline.connect("retriever", "prompt_builder.documents")
|
|
||||||
basic_rag_pipeline.connect("prompt_builder", "llm")
|
|
||||||
|
|
||||||
|
|
||||||
def get_response(
|
def get_response(
|
||||||
@ -92,6 +23,68 @@ def get_response(
|
|||||||
|
|
||||||
|
|
||||||
async def on_startup():
|
async def on_startup():
|
||||||
|
|
||||||
|
os.environ["OPENAI_API_KEY"] = "your_openai_api_key_here"
|
||||||
|
|
||||||
|
from haystack.components.embedders import SentenceTransformersDocumentEmbedder
|
||||||
|
from haystack.components.embedders import SentenceTransformersTextEmbedder
|
||||||
|
from haystack.components.retrievers.in_memory import InMemoryEmbeddingRetriever
|
||||||
|
from haystack.components.builders import PromptBuilder
|
||||||
|
from haystack.components.generators import OpenAIGenerator
|
||||||
|
|
||||||
|
from haystack.document_stores.in_memory import InMemoryDocumentStore
|
||||||
|
|
||||||
|
from datasets import load_dataset
|
||||||
|
from haystack import Document
|
||||||
|
from haystack import Pipeline
|
||||||
|
|
||||||
|
document_store = InMemoryDocumentStore()
|
||||||
|
|
||||||
|
dataset = load_dataset("bilgeyucel/seven-wonders", split="train")
|
||||||
|
docs = [Document(content=doc["content"], meta=doc["meta"]) for doc in dataset]
|
||||||
|
|
||||||
|
doc_embedder = SentenceTransformersDocumentEmbedder(
|
||||||
|
model="sentence-transformers/all-MiniLM-L6-v2"
|
||||||
|
)
|
||||||
|
doc_embedder.warm_up()
|
||||||
|
|
||||||
|
docs_with_embeddings = doc_embedder.run(docs)
|
||||||
|
document_store.write_documents(docs_with_embeddings["documents"])
|
||||||
|
|
||||||
|
text_embedder = SentenceTransformersTextEmbedder(
|
||||||
|
model="sentence-transformers/all-MiniLM-L6-v2"
|
||||||
|
)
|
||||||
|
|
||||||
|
retriever = InMemoryEmbeddingRetriever(document_store)
|
||||||
|
|
||||||
|
template = """
|
||||||
|
Given the following information, answer the question.
|
||||||
|
|
||||||
|
Context:
|
||||||
|
{% for document in documents %}
|
||||||
|
{{ document.content }}
|
||||||
|
{% endfor %}
|
||||||
|
|
||||||
|
Question: {{question}}
|
||||||
|
Answer:
|
||||||
|
"""
|
||||||
|
|
||||||
|
prompt_builder = PromptBuilder(template=template)
|
||||||
|
|
||||||
|
generator = OpenAIGenerator(model="gpt-3.5-turbo")
|
||||||
|
|
||||||
|
basic_rag_pipeline = Pipeline()
|
||||||
|
# Add components to your pipeline
|
||||||
|
basic_rag_pipeline.add_component("text_embedder", text_embedder)
|
||||||
|
basic_rag_pipeline.add_component("retriever", retriever)
|
||||||
|
basic_rag_pipeline.add_component("prompt_builder", prompt_builder)
|
||||||
|
basic_rag_pipeline.add_component("llm", generator)
|
||||||
|
|
||||||
|
# Now, connect the components to each other
|
||||||
|
basic_rag_pipeline.connect("text_embedder.embedding", "retriever.query_embedding")
|
||||||
|
basic_rag_pipeline.connect("retriever", "prompt_builder.documents")
|
||||||
|
basic_rag_pipeline.connect("prompt_builder", "llm")
|
||||||
|
|
||||||
# This function is called when the server is started.
|
# This function is called when the server is started.
|
||||||
pass
|
pass
|
||||||
|
|
||||||
|
@ -3,18 +3,6 @@ from schemas import OpenAIChatMessage
|
|||||||
import os
|
import os
|
||||||
import asyncio
|
import asyncio
|
||||||
|
|
||||||
from llama_index.embeddings.ollama import OllamaEmbedding
|
|
||||||
from llama_index.llms.ollama import Ollama
|
|
||||||
from llama_index.core import VectorStoreIndex, Settings
|
|
||||||
from llama_index.readers.github import GithubRepositoryReader, GithubClient
|
|
||||||
|
|
||||||
Settings.embed_model = OllamaEmbedding(
|
|
||||||
model_name="nomic-embed-text",
|
|
||||||
base_url="http://localhost:11434",
|
|
||||||
)
|
|
||||||
Settings.llm = Ollama(model="llama3")
|
|
||||||
|
|
||||||
|
|
||||||
index = None
|
index = None
|
||||||
documents = None
|
documents = None
|
||||||
|
|
||||||
@ -35,6 +23,18 @@ def get_response(
|
|||||||
|
|
||||||
|
|
||||||
async def on_startup():
|
async def on_startup():
|
||||||
|
|
||||||
|
from llama_index.embeddings.ollama import OllamaEmbedding
|
||||||
|
from llama_index.llms.ollama import Ollama
|
||||||
|
from llama_index.core import VectorStoreIndex, Settings
|
||||||
|
from llama_index.readers.github import GithubRepositoryReader, GithubClient
|
||||||
|
|
||||||
|
Settings.embed_model = OllamaEmbedding(
|
||||||
|
model_name="nomic-embed-text",
|
||||||
|
base_url="http://localhost:11434",
|
||||||
|
)
|
||||||
|
Settings.llm = Ollama(model="llama3")
|
||||||
|
|
||||||
global index, documents
|
global index, documents
|
||||||
|
|
||||||
github_token = os.environ.get("GITHUB_TOKEN")
|
github_token = os.environ.get("GITHUB_TOKEN")
|
||||||
|
@ -1,17 +1,6 @@
|
|||||||
from typing import List, Union, Generator
|
from typing import List, Union, Generator
|
||||||
from schemas import OpenAIChatMessage
|
from schemas import OpenAIChatMessage
|
||||||
|
|
||||||
from llama_index.embeddings.ollama import OllamaEmbedding
|
|
||||||
from llama_index.llms.ollama import Ollama
|
|
||||||
from llama_index.core import Settings, VectorStoreIndex, SimpleDirectoryReader
|
|
||||||
|
|
||||||
|
|
||||||
Settings.embed_model = OllamaEmbedding(
|
|
||||||
model_name="nomic-embed-text",
|
|
||||||
base_url="http://localhost:11434",
|
|
||||||
)
|
|
||||||
Settings.llm = Ollama(model="llama3")
|
|
||||||
|
|
||||||
|
|
||||||
documents = None
|
documents = None
|
||||||
index = None
|
index = None
|
||||||
@ -29,10 +18,22 @@ def get_response(
|
|||||||
query_engine = index.as_query_engine(streaming=True)
|
query_engine = index.as_query_engine(streaming=True)
|
||||||
response = query_engine.query(user_message)
|
response = query_engine.query(user_message)
|
||||||
|
|
||||||
|
print(response)
|
||||||
|
|
||||||
return response.response_gen
|
return response.response_gen
|
||||||
|
|
||||||
|
|
||||||
async def on_startup():
|
async def on_startup():
|
||||||
|
from llama_index.embeddings.ollama import OllamaEmbedding
|
||||||
|
from llama_index.llms.ollama import Ollama
|
||||||
|
from llama_index.core import Settings, VectorStoreIndex, SimpleDirectoryReader
|
||||||
|
|
||||||
|
Settings.embed_model = OllamaEmbedding(
|
||||||
|
model_name="nomic-embed-text",
|
||||||
|
base_url="http://localhost:11434",
|
||||||
|
)
|
||||||
|
Settings.llm = Ollama(model="llama3")
|
||||||
|
|
||||||
# This function is called when the server is started.
|
# This function is called when the server is started.
|
||||||
global documents, index
|
global documents, index
|
||||||
|
|
||||||
|
@ -1,15 +1,8 @@
|
|||||||
from typing import List, Union, Generator
|
from typing import List, Union, Generator
|
||||||
from schemas import OpenAIChatMessage
|
from schemas import OpenAIChatMessage
|
||||||
|
|
||||||
import os
|
documents = None
|
||||||
|
index = None
|
||||||
# Set the OpenAI API key
|
|
||||||
os.environ["OPENAI_API_KEY"] = "your_openai_api_key_here"
|
|
||||||
|
|
||||||
from llama_index.core import VectorStoreIndex, SimpleDirectoryReader
|
|
||||||
|
|
||||||
documents = SimpleDirectoryReader("./data").load_data()
|
|
||||||
index = VectorStoreIndex.from_documents(documents)
|
|
||||||
|
|
||||||
|
|
||||||
def get_response(
|
def get_response(
|
||||||
@ -28,6 +21,16 @@ def get_response(
|
|||||||
|
|
||||||
|
|
||||||
async def on_startup():
|
async def on_startup():
|
||||||
|
global documents, index
|
||||||
|
import os
|
||||||
|
|
||||||
|
# Set the OpenAI API key
|
||||||
|
os.environ["OPENAI_API_KEY"] = "your_openai_api_key_here"
|
||||||
|
|
||||||
|
from llama_index.core import VectorStoreIndex, SimpleDirectoryReader
|
||||||
|
|
||||||
|
documents = SimpleDirectoryReader("./data").load_data()
|
||||||
|
index = VectorStoreIndex.from_documents(documents)
|
||||||
# This function is called when the server is started.
|
# This function is called when the server is started.
|
||||||
pass
|
pass
|
||||||
|
|
||||||
|
@ -16,12 +16,7 @@ def get_response(
|
|||||||
async def on_startup():
|
async def on_startup():
|
||||||
# This function is called when the server is started.
|
# This function is called when the server is started.
|
||||||
print(f"on_startup:{__name__}")
|
print(f"on_startup:{__name__}")
|
||||||
|
pass
|
||||||
# Optional: return pipeline metadata
|
|
||||||
# return {
|
|
||||||
# "id": "pipeline_id",
|
|
||||||
# "name": "pipeline_name",
|
|
||||||
# }
|
|
||||||
|
|
||||||
|
|
||||||
async def on_shutdown():
|
async def on_shutdown():
|
||||||
|
Loading…
Reference in New Issue
Block a user