mirror of
https://github.com/open-webui/pipelines
synced 2025-05-11 08:01:08 +00:00
refac
This commit is contained in:
parent
6b4fba3309
commit
6810ed2166
16
main.py
16
main.py
@ -109,7 +109,7 @@ async def get_models():
|
||||
|
||||
@app.post("/chat/completions")
|
||||
@app.post("/v1/chat/completions")
|
||||
async def generate_openai_chat_completion(form_data: OpenAIChatCompletionForm):
|
||||
def generate_openai_chat_completion(form_data: OpenAIChatCompletionForm):
|
||||
user_message = get_last_user_message(form_data.messages)
|
||||
|
||||
if form_data.model not in PIPELINES:
|
||||
@ -119,7 +119,6 @@ async def generate_openai_chat_completion(form_data: OpenAIChatCompletionForm):
|
||||
)
|
||||
|
||||
def job():
|
||||
|
||||
get_response = PIPELINES[form_data.model]["module"].get_response
|
||||
|
||||
if form_data.stream:
|
||||
@ -138,7 +137,7 @@ async def generate_openai_chat_completion(form_data: OpenAIChatCompletionForm):
|
||||
yield f"data: {json.dumps(message)}\n\n"
|
||||
|
||||
finish_message = {
|
||||
"id": f"rag-{str(uuid.uuid4())}",
|
||||
"id": f"{form_data.model}-{str(uuid.uuid4())}",
|
||||
"object": "chat.completion.chunk",
|
||||
"created": int(time.time()),
|
||||
"model": MODEL_ID,
|
||||
@ -168,7 +167,7 @@ async def generate_openai_chat_completion(form_data: OpenAIChatCompletionForm):
|
||||
message = f"{message}{stream}"
|
||||
|
||||
return {
|
||||
"id": f"rag-{str(uuid.uuid4())}",
|
||||
"id": f"{form_data.model}-{str(uuid.uuid4())}",
|
||||
"object": "chat.completion",
|
||||
"created": int(time.time()),
|
||||
"model": MODEL_ID,
|
||||
@ -185,14 +184,7 @@ async def generate_openai_chat_completion(form_data: OpenAIChatCompletionForm):
|
||||
],
|
||||
}
|
||||
|
||||
try:
|
||||
return await run_in_threadpool(job)
|
||||
except Exception as e:
|
||||
print(e)
|
||||
raise HTTPException(
|
||||
status_code=500,
|
||||
detail="{e}",
|
||||
)
|
||||
return job()
|
||||
|
||||
|
||||
@app.get("/")
|
||||
|
@ -2,76 +2,7 @@ from typing import List, Union, Generator
|
||||
from schemas import OpenAIChatMessage
|
||||
import os
|
||||
|
||||
|
||||
os.environ["OPENAI_API_KEY"] = "your_openai_api_key_here"
|
||||
|
||||
from haystack.components.embedders import SentenceTransformersDocumentEmbedder
|
||||
from haystack.components.embedders import SentenceTransformersTextEmbedder
|
||||
from haystack.components.retrievers.in_memory import InMemoryEmbeddingRetriever
|
||||
from haystack.components.builders import PromptBuilder
|
||||
from haystack.components.generators import OpenAIGenerator
|
||||
|
||||
from haystack.document_stores.in_memory import InMemoryDocumentStore
|
||||
|
||||
|
||||
from datasets import load_dataset
|
||||
from haystack import Document
|
||||
from haystack import Pipeline
|
||||
|
||||
|
||||
document_store = InMemoryDocumentStore()
|
||||
|
||||
dataset = load_dataset("bilgeyucel/seven-wonders", split="train")
|
||||
docs = [Document(content=doc["content"], meta=doc["meta"]) for doc in dataset]
|
||||
|
||||
|
||||
doc_embedder = SentenceTransformersDocumentEmbedder(
|
||||
model="sentence-transformers/all-MiniLM-L6-v2"
|
||||
)
|
||||
doc_embedder.warm_up()
|
||||
|
||||
|
||||
docs_with_embeddings = doc_embedder.run(docs)
|
||||
document_store.write_documents(docs_with_embeddings["documents"])
|
||||
|
||||
|
||||
text_embedder = SentenceTransformersTextEmbedder(
|
||||
model="sentence-transformers/all-MiniLM-L6-v2"
|
||||
)
|
||||
|
||||
|
||||
retriever = InMemoryEmbeddingRetriever(document_store)
|
||||
|
||||
|
||||
template = """
|
||||
Given the following information, answer the question.
|
||||
|
||||
Context:
|
||||
{% for document in documents %}
|
||||
{{ document.content }}
|
||||
{% endfor %}
|
||||
|
||||
Question: {{question}}
|
||||
Answer:
|
||||
"""
|
||||
|
||||
prompt_builder = PromptBuilder(template=template)
|
||||
|
||||
|
||||
generator = OpenAIGenerator(model="gpt-3.5-turbo")
|
||||
|
||||
|
||||
basic_rag_pipeline = Pipeline()
|
||||
# Add components to your pipeline
|
||||
basic_rag_pipeline.add_component("text_embedder", text_embedder)
|
||||
basic_rag_pipeline.add_component("retriever", retriever)
|
||||
basic_rag_pipeline.add_component("prompt_builder", prompt_builder)
|
||||
basic_rag_pipeline.add_component("llm", generator)
|
||||
|
||||
# Now, connect the components to each other
|
||||
basic_rag_pipeline.connect("text_embedder.embedding", "retriever.query_embedding")
|
||||
basic_rag_pipeline.connect("retriever", "prompt_builder.documents")
|
||||
basic_rag_pipeline.connect("prompt_builder", "llm")
|
||||
global basic_rag_pipeline
|
||||
|
||||
|
||||
def get_response(
|
||||
@ -92,6 +23,68 @@ def get_response(
|
||||
|
||||
|
||||
async def on_startup():
|
||||
|
||||
os.environ["OPENAI_API_KEY"] = "your_openai_api_key_here"
|
||||
|
||||
from haystack.components.embedders import SentenceTransformersDocumentEmbedder
|
||||
from haystack.components.embedders import SentenceTransformersTextEmbedder
|
||||
from haystack.components.retrievers.in_memory import InMemoryEmbeddingRetriever
|
||||
from haystack.components.builders import PromptBuilder
|
||||
from haystack.components.generators import OpenAIGenerator
|
||||
|
||||
from haystack.document_stores.in_memory import InMemoryDocumentStore
|
||||
|
||||
from datasets import load_dataset
|
||||
from haystack import Document
|
||||
from haystack import Pipeline
|
||||
|
||||
document_store = InMemoryDocumentStore()
|
||||
|
||||
dataset = load_dataset("bilgeyucel/seven-wonders", split="train")
|
||||
docs = [Document(content=doc["content"], meta=doc["meta"]) for doc in dataset]
|
||||
|
||||
doc_embedder = SentenceTransformersDocumentEmbedder(
|
||||
model="sentence-transformers/all-MiniLM-L6-v2"
|
||||
)
|
||||
doc_embedder.warm_up()
|
||||
|
||||
docs_with_embeddings = doc_embedder.run(docs)
|
||||
document_store.write_documents(docs_with_embeddings["documents"])
|
||||
|
||||
text_embedder = SentenceTransformersTextEmbedder(
|
||||
model="sentence-transformers/all-MiniLM-L6-v2"
|
||||
)
|
||||
|
||||
retriever = InMemoryEmbeddingRetriever(document_store)
|
||||
|
||||
template = """
|
||||
Given the following information, answer the question.
|
||||
|
||||
Context:
|
||||
{% for document in documents %}
|
||||
{{ document.content }}
|
||||
{% endfor %}
|
||||
|
||||
Question: {{question}}
|
||||
Answer:
|
||||
"""
|
||||
|
||||
prompt_builder = PromptBuilder(template=template)
|
||||
|
||||
generator = OpenAIGenerator(model="gpt-3.5-turbo")
|
||||
|
||||
basic_rag_pipeline = Pipeline()
|
||||
# Add components to your pipeline
|
||||
basic_rag_pipeline.add_component("text_embedder", text_embedder)
|
||||
basic_rag_pipeline.add_component("retriever", retriever)
|
||||
basic_rag_pipeline.add_component("prompt_builder", prompt_builder)
|
||||
basic_rag_pipeline.add_component("llm", generator)
|
||||
|
||||
# Now, connect the components to each other
|
||||
basic_rag_pipeline.connect("text_embedder.embedding", "retriever.query_embedding")
|
||||
basic_rag_pipeline.connect("retriever", "prompt_builder.documents")
|
||||
basic_rag_pipeline.connect("prompt_builder", "llm")
|
||||
|
||||
# This function is called when the server is started.
|
||||
pass
|
||||
|
||||
|
@ -3,18 +3,6 @@ from schemas import OpenAIChatMessage
|
||||
import os
|
||||
import asyncio
|
||||
|
||||
from llama_index.embeddings.ollama import OllamaEmbedding
|
||||
from llama_index.llms.ollama import Ollama
|
||||
from llama_index.core import VectorStoreIndex, Settings
|
||||
from llama_index.readers.github import GithubRepositoryReader, GithubClient
|
||||
|
||||
Settings.embed_model = OllamaEmbedding(
|
||||
model_name="nomic-embed-text",
|
||||
base_url="http://localhost:11434",
|
||||
)
|
||||
Settings.llm = Ollama(model="llama3")
|
||||
|
||||
|
||||
index = None
|
||||
documents = None
|
||||
|
||||
@ -35,6 +23,18 @@ def get_response(
|
||||
|
||||
|
||||
async def on_startup():
|
||||
|
||||
from llama_index.embeddings.ollama import OllamaEmbedding
|
||||
from llama_index.llms.ollama import Ollama
|
||||
from llama_index.core import VectorStoreIndex, Settings
|
||||
from llama_index.readers.github import GithubRepositoryReader, GithubClient
|
||||
|
||||
Settings.embed_model = OllamaEmbedding(
|
||||
model_name="nomic-embed-text",
|
||||
base_url="http://localhost:11434",
|
||||
)
|
||||
Settings.llm = Ollama(model="llama3")
|
||||
|
||||
global index, documents
|
||||
|
||||
github_token = os.environ.get("GITHUB_TOKEN")
|
||||
|
@ -1,17 +1,6 @@
|
||||
from typing import List, Union, Generator
|
||||
from schemas import OpenAIChatMessage
|
||||
|
||||
from llama_index.embeddings.ollama import OllamaEmbedding
|
||||
from llama_index.llms.ollama import Ollama
|
||||
from llama_index.core import Settings, VectorStoreIndex, SimpleDirectoryReader
|
||||
|
||||
|
||||
Settings.embed_model = OllamaEmbedding(
|
||||
model_name="nomic-embed-text",
|
||||
base_url="http://localhost:11434",
|
||||
)
|
||||
Settings.llm = Ollama(model="llama3")
|
||||
|
||||
|
||||
documents = None
|
||||
index = None
|
||||
@ -29,10 +18,22 @@ def get_response(
|
||||
query_engine = index.as_query_engine(streaming=True)
|
||||
response = query_engine.query(user_message)
|
||||
|
||||
print(response)
|
||||
|
||||
return response.response_gen
|
||||
|
||||
|
||||
async def on_startup():
|
||||
from llama_index.embeddings.ollama import OllamaEmbedding
|
||||
from llama_index.llms.ollama import Ollama
|
||||
from llama_index.core import Settings, VectorStoreIndex, SimpleDirectoryReader
|
||||
|
||||
Settings.embed_model = OllamaEmbedding(
|
||||
model_name="nomic-embed-text",
|
||||
base_url="http://localhost:11434",
|
||||
)
|
||||
Settings.llm = Ollama(model="llama3")
|
||||
|
||||
# This function is called when the server is started.
|
||||
global documents, index
|
||||
|
||||
|
@ -1,15 +1,8 @@
|
||||
from typing import List, Union, Generator
|
||||
from schemas import OpenAIChatMessage
|
||||
|
||||
import os
|
||||
|
||||
# Set the OpenAI API key
|
||||
os.environ["OPENAI_API_KEY"] = "your_openai_api_key_here"
|
||||
|
||||
from llama_index.core import VectorStoreIndex, SimpleDirectoryReader
|
||||
|
||||
documents = SimpleDirectoryReader("./data").load_data()
|
||||
index = VectorStoreIndex.from_documents(documents)
|
||||
documents = None
|
||||
index = None
|
||||
|
||||
|
||||
def get_response(
|
||||
@ -28,6 +21,16 @@ def get_response(
|
||||
|
||||
|
||||
async def on_startup():
|
||||
global documents, index
|
||||
import os
|
||||
|
||||
# Set the OpenAI API key
|
||||
os.environ["OPENAI_API_KEY"] = "your_openai_api_key_here"
|
||||
|
||||
from llama_index.core import VectorStoreIndex, SimpleDirectoryReader
|
||||
|
||||
documents = SimpleDirectoryReader("./data").load_data()
|
||||
index = VectorStoreIndex.from_documents(documents)
|
||||
# This function is called when the server is started.
|
||||
pass
|
||||
|
||||
|
@ -16,12 +16,7 @@ def get_response(
|
||||
async def on_startup():
|
||||
# This function is called when the server is started.
|
||||
print(f"on_startup:{__name__}")
|
||||
|
||||
# Optional: return pipeline metadata
|
||||
# return {
|
||||
# "id": "pipeline_id",
|
||||
# "name": "pipeline_name",
|
||||
# }
|
||||
pass
|
||||
|
||||
|
||||
async def on_shutdown():
|
||||
|
Loading…
Reference in New Issue
Block a user