mirror of
https://github.com/open-webui/pipelines
synced 2025-06-25 09:36:35 +00:00
refac: valves
This commit is contained in:
parent
74e5c067e5
commit
5b8b9d8f6d
@ -19,15 +19,17 @@ import requests
|
||||
|
||||
|
||||
class Pipeline:
|
||||
class Valves(BaseModel):
|
||||
ANTHROPIC_API_KEY: str = ""
|
||||
|
||||
def __init__(self):
|
||||
self.type = "manifold"
|
||||
self.id = "anthropic"
|
||||
self.name = "anthropic/"
|
||||
|
||||
class Valves(BaseModel):
|
||||
ANTHROPIC_API_KEY: str
|
||||
|
||||
self.valves = Valves(**{"ANTHROPIC_API_KEY": os.getenv("ANTHROPIC_API_KEY")})
|
||||
self.valves = self.Valves(
|
||||
**{"ANTHROPIC_API_KEY": os.getenv("ANTHROPIC_API_KEY")}
|
||||
)
|
||||
self.client = Anthropic(api_key=self.valves.ANTHROPIC_API_KEY)
|
||||
|
||||
def get_anthropic_models(self):
|
||||
|
@ -18,16 +18,16 @@ import requests
|
||||
|
||||
|
||||
class Pipeline:
|
||||
class Valves(BaseModel):
|
||||
COHERE_API_BASE_URL: str = "https://api.cohere.com/v1"
|
||||
COHERE_API_KEY: str = ""
|
||||
|
||||
def __init__(self):
|
||||
self.type = "manifold"
|
||||
self.id = "cohere"
|
||||
self.name = "cohere/"
|
||||
|
||||
class Valves(BaseModel):
|
||||
COHERE_API_BASE_URL: str = "https://api.cohere.com/v1"
|
||||
COHERE_API_KEY: str
|
||||
|
||||
self.valves = Valves(**{"COHERE_API_KEY": os.getenv("COHERE_API_KEY")})
|
||||
self.valves = self.Valves(**{"COHERE_API_KEY": os.getenv("COHERE_API_KEY")})
|
||||
|
||||
self.pipelines = self.get_cohere_models()
|
||||
|
||||
|
@ -6,6 +6,20 @@ import time
|
||||
|
||||
|
||||
class Pipeline:
|
||||
class Valves(BaseModel):
|
||||
# List target pipeline ids (models) that this filter will be connected to.
|
||||
# If you want to connect this filter to all pipelines, you can set pipelines to ["*"]
|
||||
pipelines: List[str] = []
|
||||
|
||||
# Assign a priority level to the filter pipeline.
|
||||
# The priority level determines the order in which the filter pipelines are executed.
|
||||
# The lower the number, the higher the priority.
|
||||
priority: int = 0
|
||||
|
||||
# Valves for conversation turn limiting
|
||||
target_user_roles: List[str] = ["user"]
|
||||
max_turns: Optional[int] = None
|
||||
|
||||
def __init__(self):
|
||||
# Pipeline filters are only compatible with Open WebUI
|
||||
# You can think of filter pipeline as a middleware that can be used to edit the form data before it is sent to the OpenAI API.
|
||||
@ -17,21 +31,7 @@ class Pipeline:
|
||||
self.id = "conversation_turn_limit_filter_pipeline"
|
||||
self.name = "Conversation Turn Limit Filter"
|
||||
|
||||
class Valves(BaseModel):
|
||||
# List target pipeline ids (models) that this filter will be connected to.
|
||||
# If you want to connect this filter to all pipelines, you can set pipelines to ["*"]
|
||||
pipelines: List[str] = []
|
||||
|
||||
# Assign a priority level to the filter pipeline.
|
||||
# The priority level determines the order in which the filter pipelines are executed.
|
||||
# The lower the number, the higher the priority.
|
||||
priority: int = 0
|
||||
|
||||
# Valves for conversation turn limiting
|
||||
target_user_roles: List[str] = ["user"]
|
||||
max_turns: Optional[int] = None
|
||||
|
||||
self.valves = Valves(
|
||||
self.valves = self.Valves(
|
||||
**{
|
||||
"pipelines": os.getenv("CONVERSATION_TURN_PIPELINES", "*").split(","),
|
||||
"max_turns": 10,
|
||||
|
@ -16,6 +16,17 @@ import os
|
||||
|
||||
|
||||
class Pipeline:
|
||||
class Valves(BaseModel):
|
||||
# List target pipeline ids (models) that this filter will be connected to.
|
||||
# If you want to connect this filter to all pipelines, you can set pipelines to ["*"]
|
||||
# e.g. ["llama3:latest", "gpt-3.5-turbo"]
|
||||
pipelines: List[str] = []
|
||||
|
||||
# Assign a priority level to the filter pipeline.
|
||||
# The priority level determines the order in which the filter pipelines are executed.
|
||||
# The lower the number, the higher the priority.
|
||||
priority: int = 0
|
||||
|
||||
def __init__(self):
|
||||
# Pipeline filters are only compatible with Open WebUI
|
||||
# You can think of filter pipeline as a middleware that can be used to edit the form data before it is sent to the OpenAI API.
|
||||
@ -28,19 +39,8 @@ class Pipeline:
|
||||
self.id = "detoxify_filter_pipeline"
|
||||
self.name = "Detoxify Filter"
|
||||
|
||||
class Valves(BaseModel):
|
||||
# List target pipeline ids (models) that this filter will be connected to.
|
||||
# If you want to connect this filter to all pipelines, you can set pipelines to ["*"]
|
||||
# e.g. ["llama3:latest", "gpt-3.5-turbo"]
|
||||
pipelines: List[str] = []
|
||||
|
||||
# Assign a priority level to the filter pipeline.
|
||||
# The priority level determines the order in which the filter pipelines are executed.
|
||||
# The lower the number, the higher the priority.
|
||||
priority: int = 0
|
||||
|
||||
# Initialize
|
||||
self.valves = Valves(
|
||||
self.valves = self.Valves(
|
||||
**{
|
||||
"pipelines": ["*"], # Connect to all pipelines
|
||||
}
|
||||
|
@ -1,8 +1,12 @@
|
||||
from typing import List, Union, Generator, Iterator
|
||||
from schemas import OpenAIChatMessage
|
||||
from pydantic import BaseModel
|
||||
|
||||
|
||||
class Pipeline:
|
||||
class Valves(BaseModel):
|
||||
pass
|
||||
|
||||
def __init__(self):
|
||||
# Optionally, you can set the id and name of the pipeline.
|
||||
# Assign a unique identifier to the pipeline.
|
||||
|
@ -14,6 +14,19 @@ from schemas import OpenAIChatMessage
|
||||
|
||||
|
||||
class Pipeline:
|
||||
class Valves(BaseModel):
|
||||
# List target pipeline ids (models) that this filter will be connected to.
|
||||
# If you want to connect this filter to all pipelines, you can set pipelines to ["*"]
|
||||
pipelines: List[str] = []
|
||||
|
||||
# Assign a priority level to the filter pipeline.
|
||||
# The priority level determines the order in which the filter pipelines are executed.
|
||||
# The lower the number, the higher the priority.
|
||||
priority: int = 0
|
||||
|
||||
# Add your custom parameters here
|
||||
pass
|
||||
|
||||
def __init__(self):
|
||||
# Pipeline filters are only compatible with Open WebUI
|
||||
# You can think of filter pipeline as a middleware that can be used to edit the form data before it is sent to the OpenAI API.
|
||||
@ -26,20 +39,7 @@ class Pipeline:
|
||||
self.id = "filter_pipeline"
|
||||
self.name = "Filter"
|
||||
|
||||
class Valves(BaseModel):
|
||||
# List target pipeline ids (models) that this filter will be connected to.
|
||||
# If you want to connect this filter to all pipelines, you can set pipelines to ["*"]
|
||||
pipelines: List[str] = []
|
||||
|
||||
# Assign a priority level to the filter pipeline.
|
||||
# The priority level determines the order in which the filter pipelines are executed.
|
||||
# The lower the number, the higher the priority.
|
||||
priority: int = 0
|
||||
|
||||
# Add your custom parameters here
|
||||
pass
|
||||
|
||||
self.valves = Valves(**{"pipelines": ["llama3:latest"]})
|
||||
self.valves = self.Valves(**{"pipelines": ["llama3:latest"]})
|
||||
|
||||
pass
|
||||
|
||||
|
@ -18,6 +18,23 @@ from langfuse import Langfuse
|
||||
|
||||
|
||||
class Pipeline:
|
||||
|
||||
class Valves(BaseModel):
|
||||
# List target pipeline ids (models) that this filter will be connected to.
|
||||
# If you want to connect this filter to all pipelines, you can set pipelines to ["*"]
|
||||
# e.g. ["llama3:latest", "gpt-3.5-turbo"]
|
||||
pipelines: List[str] = []
|
||||
|
||||
# Assign a priority level to the filter pipeline.
|
||||
# The priority level determines the order in which the filter pipelines are executed.
|
||||
# The lower the number, the higher the priority.
|
||||
priority: int = 0
|
||||
|
||||
# Valves
|
||||
secret_key: str
|
||||
public_key: str
|
||||
host: str
|
||||
|
||||
def __init__(self):
|
||||
# Pipeline filters are only compatible with Open WebUI
|
||||
# You can think of filter pipeline as a middleware that can be used to edit the form data before it is sent to the OpenAI API.
|
||||
@ -30,24 +47,8 @@ class Pipeline:
|
||||
self.id = "langfuse_filter_pipeline"
|
||||
self.name = "Langfuse Filter"
|
||||
|
||||
class Valves(BaseModel):
|
||||
# List target pipeline ids (models) that this filter will be connected to.
|
||||
# If you want to connect this filter to all pipelines, you can set pipelines to ["*"]
|
||||
# e.g. ["llama3:latest", "gpt-3.5-turbo"]
|
||||
pipelines: List[str] = []
|
||||
|
||||
# Assign a priority level to the filter pipeline.
|
||||
# The priority level determines the order in which the filter pipelines are executed.
|
||||
# The lower the number, the higher the priority.
|
||||
priority: int = 0
|
||||
|
||||
# Valves
|
||||
secret_key: str
|
||||
public_key: str
|
||||
host: str
|
||||
|
||||
# Initialize
|
||||
self.valves = Valves(
|
||||
self.valves = self.Valves(
|
||||
**{
|
||||
"pipelines": ["*"], # Connect to all pipelines
|
||||
"secret_key": os.getenv("LANGFUSE_SECRET_KEY"),
|
||||
@ -94,7 +95,7 @@ class Pipeline:
|
||||
input=body,
|
||||
user_id=user["id"],
|
||||
metadata={"name": user["name"]},
|
||||
session_id=body["chat_id"]
|
||||
session_id=body["chat_id"],
|
||||
)
|
||||
|
||||
print(trace.get_trace_url())
|
||||
|
@ -8,6 +8,31 @@ from utils.main import get_last_user_message, get_last_assistant_message
|
||||
|
||||
|
||||
class Pipeline:
|
||||
|
||||
class Valves(BaseModel):
|
||||
# List target pipeline ids (models) that this filter will be connected to.
|
||||
# If you want to connect this filter to all pipelines, you can set pipelines to ["*"]
|
||||
# e.g. ["llama3:latest", "gpt-3.5-turbo"]
|
||||
pipelines: List[str] = []
|
||||
|
||||
# Assign a priority level to the filter pipeline.
|
||||
# The priority level determines the order in which the filter pipelines are executed.
|
||||
# The lower the number, the higher the priority.
|
||||
priority: int = 0
|
||||
|
||||
# Valves
|
||||
libretranslate_url: str
|
||||
|
||||
# Source and target languages
|
||||
# User message will be translated from source_user to target_user
|
||||
source_user: Optional[str] = "auto"
|
||||
target_user: Optional[str] = "en"
|
||||
|
||||
# Assistant languages
|
||||
# Assistant message will be translated from source_assistant to target_assistant
|
||||
source_assistant: Optional[str] = "en"
|
||||
target_assistant: Optional[str] = "es"
|
||||
|
||||
def __init__(self):
|
||||
# Pipeline filters are only compatible with Open WebUI
|
||||
# You can think of filter pipeline as a middleware that can be used to edit the form data before it is sent to the OpenAI API.
|
||||
@ -20,32 +45,8 @@ class Pipeline:
|
||||
self.id = "libretranslate_filter_pipeline"
|
||||
self.name = "LibreTranslate Filter"
|
||||
|
||||
class Valves(BaseModel):
|
||||
# List target pipeline ids (models) that this filter will be connected to.
|
||||
# If you want to connect this filter to all pipelines, you can set pipelines to ["*"]
|
||||
# e.g. ["llama3:latest", "gpt-3.5-turbo"]
|
||||
pipelines: List[str] = []
|
||||
|
||||
# Assign a priority level to the filter pipeline.
|
||||
# The priority level determines the order in which the filter pipelines are executed.
|
||||
# The lower the number, the higher the priority.
|
||||
priority: int = 0
|
||||
|
||||
# Valves
|
||||
libretranslate_url: str
|
||||
|
||||
# Source and target languages
|
||||
# User message will be translated from source_user to target_user
|
||||
source_user: Optional[str] = "auto"
|
||||
target_user: Optional[str] = "en"
|
||||
|
||||
# Assistant languages
|
||||
# Assistant message will be translated from source_assistant to target_assistant
|
||||
source_assistant: Optional[str] = "en"
|
||||
target_assistant: Optional[str] = "es"
|
||||
|
||||
# Initialize
|
||||
self.valves = Valves(
|
||||
self.valves = self.Valves(
|
||||
**{
|
||||
"pipelines": ["*"], # Connect to all pipelines
|
||||
"libretranslate_url": os.getenv(
|
||||
|
@ -14,6 +14,10 @@ import requests
|
||||
|
||||
|
||||
class Pipeline:
|
||||
|
||||
class Valves(BaseModel):
|
||||
LITELLM_BASE_URL: str
|
||||
|
||||
def __init__(self):
|
||||
# You can also set the pipelines that are available in this pipeline.
|
||||
# Set manifold to True if you want to use this pipeline as a manifold.
|
||||
@ -29,11 +33,8 @@ class Pipeline:
|
||||
# Optionally, you can set the name of the manifold pipeline.
|
||||
self.name = "LiteLLM: "
|
||||
|
||||
class Valves(BaseModel):
|
||||
LITELLM_BASE_URL: str
|
||||
|
||||
# Initialize rate limits
|
||||
self.valves = Valves(**{"LITELLM_BASE_URL": "http://localhost:4001"})
|
||||
self.valves = self.Valves(**{"LITELLM_BASE_URL": "http://localhost:4001"})
|
||||
self.pipelines = []
|
||||
pass
|
||||
|
||||
|
@ -21,6 +21,12 @@ import yaml
|
||||
|
||||
|
||||
class Pipeline:
|
||||
class Valves(BaseModel):
|
||||
LITELLM_CONFIG_DIR: str = "./litellm/config.yaml"
|
||||
LITELLM_PROXY_PORT: int = 4001
|
||||
LITELLM_PROXY_HOST: str = "127.0.0.1"
|
||||
litellm_config: dict = {}
|
||||
|
||||
def __init__(self):
|
||||
# You can also set the pipelines that are available in this pipeline.
|
||||
# Set manifold to True if you want to use this pipeline as a manifold.
|
||||
@ -36,14 +42,8 @@ class Pipeline:
|
||||
# Optionally, you can set the name of the manifold pipeline.
|
||||
self.name = "LiteLLM: "
|
||||
|
||||
class Valves(BaseModel):
|
||||
LITELLM_CONFIG_DIR: str = "./litellm/config.yaml"
|
||||
LITELLM_PROXY_PORT: int = 4001
|
||||
LITELLM_PROXY_HOST: str = "127.0.0.1"
|
||||
litellm_config: dict = {}
|
||||
|
||||
# Initialize Valves
|
||||
self.valves = Valves(**{"LITELLM_CONFIG_DIR": f"./litellm/config.yaml"})
|
||||
self.valves = self.Valves(**{"LITELLM_CONFIG_DIR": f"./litellm/config.yaml"})
|
||||
self.background_process = None
|
||||
pass
|
||||
|
||||
|
@ -5,6 +5,10 @@ import requests
|
||||
|
||||
|
||||
class Pipeline:
|
||||
|
||||
class Valves(BaseModel):
|
||||
OLLAMA_BASE_URL: str
|
||||
|
||||
def __init__(self):
|
||||
# You can also set the pipelines that are available in this pipeline.
|
||||
# Set manifold to True if you want to use this pipeline as a manifold.
|
||||
@ -20,10 +24,7 @@ class Pipeline:
|
||||
# Optionally, you can set the name of the manifold pipeline.
|
||||
self.name = "Ollama: "
|
||||
|
||||
class Valves(BaseModel):
|
||||
OLLAMA_BASE_URL: str
|
||||
|
||||
self.valves = Valves(**{"OLLAMA_BASE_URL": "http://localhost:11435"})
|
||||
self.valves = self.Valves(**{"OLLAMA_BASE_URL": "http://localhost:11435"})
|
||||
self.pipelines = []
|
||||
pass
|
||||
|
||||
|
@ -4,7 +4,24 @@ from pydantic import BaseModel
|
||||
from schemas import OpenAIChatMessage
|
||||
import time
|
||||
|
||||
|
||||
class Pipeline:
|
||||
class Valves(BaseModel):
|
||||
# List target pipeline ids (models) that this filter will be connected to.
|
||||
# If you want to connect this filter to all pipelines, you can set pipelines to ["*"]
|
||||
pipelines: List[str] = []
|
||||
|
||||
# Assign a priority level to the filter pipeline.
|
||||
# The priority level determines the order in which the filter pipelines are executed.
|
||||
# The lower the number, the higher the priority.
|
||||
priority: int = 0
|
||||
|
||||
# Valves for rate limiting
|
||||
requests_per_minute: Optional[int] = None
|
||||
requests_per_hour: Optional[int] = None
|
||||
sliding_window_limit: Optional[int] = None
|
||||
sliding_window_minutes: Optional[int] = None
|
||||
|
||||
def __init__(self):
|
||||
# Pipeline filters are only compatible with Open WebUI
|
||||
# You can think of filter pipeline as a middleware that can be used to edit the form data before it is sent to the OpenAI API.
|
||||
@ -16,36 +33,22 @@ class Pipeline:
|
||||
self.id = "rate_limit_filter_pipeline"
|
||||
self.name = "Rate Limit Filter"
|
||||
|
||||
class Valves(BaseModel):
|
||||
# List target pipeline ids (models) that this filter will be connected to.
|
||||
# If you want to connect this filter to all pipelines, you can set pipelines to ["*"]
|
||||
pipelines: List[str] = []
|
||||
|
||||
# Assign a priority level to the filter pipeline.
|
||||
# The priority level determines the order in which the filter pipelines are executed.
|
||||
# The lower the number, the higher the priority.
|
||||
priority: int = 0
|
||||
|
||||
# Valves for rate limiting
|
||||
requests_per_minute: Optional[int] = None
|
||||
requests_per_hour: Optional[int] = None
|
||||
sliding_window_limit: Optional[int] = None
|
||||
sliding_window_minutes: Optional[int] = None
|
||||
|
||||
# Initialize rate limits
|
||||
pipelines = os.getenv("RATE_LIMIT_PIPELINES", "*").split(",")
|
||||
requests_per_minute = int(os.getenv("RATE_LIMIT_REQUESTS_PER_MINUTE", 10))
|
||||
requests_per_hour = int(os.getenv("RATE_LIMIT_REQUESTS_PER_HOUR", 1000))
|
||||
sliding_window_limit = int(os.getenv("RATE_LIMIT_SLIDING_WINDOW_LIMIT", 100))
|
||||
sliding_window_minutes = int(os.getenv("RATE_LIMIT_SLIDING_WINDOW_MINUTES", 15))
|
||||
|
||||
self.valves = Valves(
|
||||
self.valves = self.Valves(
|
||||
**{
|
||||
"pipelines": pipelines,
|
||||
"requests_per_minute": requests_per_minute,
|
||||
"requests_per_hour": requests_per_hour,
|
||||
"sliding_window_limit": sliding_window_limit,
|
||||
"sliding_window_minutes": sliding_window_minutes,
|
||||
"pipelines": os.getenv("RATE_LIMIT_PIPELINES", "*").split(","),
|
||||
"requests_per_minute": int(
|
||||
os.getenv("RATE_LIMIT_REQUESTS_PER_MINUTE", 10)
|
||||
),
|
||||
"requests_per_hour": int(
|
||||
os.getenv("RATE_LIMIT_REQUESTS_PER_HOUR", 1000)
|
||||
),
|
||||
"sliding_window_limit": int(
|
||||
os.getenv("RATE_LIMIT_SLIDING_WINDOW_LIMIT", 100)
|
||||
),
|
||||
"sliding_window_minutes": int(
|
||||
os.getenv("RATE_LIMIT_SLIDING_WINDOW_MINUTES", 15)
|
||||
),
|
||||
}
|
||||
)
|
||||
|
||||
|
@ -6,6 +6,9 @@ import os
|
||||
|
||||
|
||||
class Pipeline:
|
||||
class Valves(BaseModel):
|
||||
pass
|
||||
|
||||
def __init__(self):
|
||||
# Assign a unique identifier to the pipeline.
|
||||
# The identifier must be unique across all pipelines.
|
||||
@ -13,11 +16,8 @@ class Pipeline:
|
||||
self.id = "wiki_pipeline"
|
||||
self.name = "Wikipedia Pipeline"
|
||||
|
||||
class Valves(BaseModel):
|
||||
pass
|
||||
|
||||
# Initialize rate limits
|
||||
self.valves = Valves(**{"OPENAI_API_KEY": os.getenv("OPENAI_API_KEY", "")})
|
||||
self.valves = self.Valves(**{"OPENAI_API_KEY": os.getenv("OPENAI_API_KEY", "")})
|
||||
|
||||
async def on_startup(self):
|
||||
# This function is called when the server is started.
|
||||
|
Loading…
Reference in New Issue
Block a user