Merge pull request #469 from kikumoto/feature/support_for_bedrock_deepseek

Add  AWS Bedrock DeepSeek model.
This commit is contained in:
Tim Jaeryang Baek 2025-04-14 08:55:32 -07:00 committed by GitHub
commit 419779101c
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194

View File

@ -0,0 +1,187 @@
"""
title: AWS Bedrock DeepSeek Pipeline
author: kikumoto
date: 2025-03-17
version: 1.0
license: MIT
description: A pipeline for generating text using the AWS Bedrock API.
requirements: boto3
environment_variables:
"""
import json
import logging
from typing import List, Union, Generator, Iterator, Dict, Optional, Any
import boto3
from pydantic import BaseModel
import os
from utils.pipelines.main import pop_system_message
class Pipeline:
class Valves(BaseModel):
AWS_ACCESS_KEY: Optional[str] = None
AWS_SECRET_KEY: Optional[str] = None
AWS_REGION_NAME: Optional[str] = None
def __init__(self):
self.type = "manifold"
self.name = "Bedrock DeepSeek: "
self.valves = self.Valves(
**{
"AWS_ACCESS_KEY": os.getenv("AWS_ACCESS_KEY", ""),
"AWS_SECRET_KEY": os.getenv("AWS_SECRET_KEY", ""),
"AWS_REGION_NAME": os.getenv(
"AWS_REGION_NAME", os.getenv(
"AWS_REGION", os.getenv("AWS_DEFAULT_REGION", "")
)
),
}
)
self.update_pipelines()
async def on_startup(self):
# This function is called when the server is started.
print(f"on_startup:{__name__}")
self.update_pipelines()
pass
async def on_shutdown(self):
# This function is called when the server is stopped.
print(f"on_shutdown:{__name__}")
pass
async def on_valves_updated(self):
# This function is called when the valves are updated.
print(f"on_valves_updated:{__name__}")
self.update_pipelines()
def update_pipelines(self) -> None:
try:
self.bedrock = boto3.client(service_name="bedrock",
aws_access_key_id=self.valves.AWS_ACCESS_KEY,
aws_secret_access_key=self.valves.AWS_SECRET_KEY,
region_name=self.valves.AWS_REGION_NAME)
self.bedrock_runtime = boto3.client(service_name="bedrock-runtime",
aws_access_key_id=self.valves.AWS_ACCESS_KEY,
aws_secret_access_key=self.valves.AWS_SECRET_KEY,
region_name=self.valves.AWS_REGION_NAME)
self.pipelines = self.get_models()
except Exception as e:
print(f"Error: {e}")
self.pipelines = [
{
"id": "error",
"name": "Could not fetch models from Bedrock, please set up AWS Key/Secret or Instance/Task Role.",
},
]
def pipelines(self) -> List[dict]:
return self.get_models()
def get_models(self):
try:
res = []
response = self.bedrock.list_foundation_models(byProvider='DeepSeek')
for model in response['modelSummaries']:
inference_types = model.get('inferenceTypesSupported', [])
if "ON_DEMAND" in inference_types:
res.append({'id': model['modelId'], 'name': model['modelName']})
elif "INFERENCE_PROFILE" in inference_types:
inferenceProfileId = self.getInferenceProfileId(model['modelArn'])
if inferenceProfileId:
res.append({'id': inferenceProfileId, 'name': model['modelName']})
return res
except Exception as e:
print(f"Error: {e}")
return [
{
"id": "error",
"name": "Could not fetch models from Bedrock, please check permissoin.",
},
]
def getInferenceProfileId(self, modelArn: str) -> str:
response = self.bedrock.list_inference_profiles()
for profile in response.get('inferenceProfileSummaries', []):
for model in profile.get('models', []):
if model.get('modelArn') == modelArn:
return profile['inferenceProfileId']
return None
def pipe(
self, user_message: str, model_id: str, messages: List[dict], body: dict
) -> Union[str, Generator, Iterator]:
# This is where you can add your custom pipelines like RAG.
print(f"pipe:{__name__}")
try:
# Remove unnecessary keys
for key in ['user', 'chat_id', 'title']:
body.pop(key, None)
system_message, messages = pop_system_message(messages)
logging.info(f"pop_system_message: {json.dumps(messages)}")
processed_messages = []
for message in messages:
processed_content = []
if isinstance(message.get("content"), list):
for item in message["content"]:
# DeepSeek currently doesn't support multi-modal inputs
if item["type"] == "text":
processed_content.append({"text": item["text"]})
else:
processed_content = [{"text": message.get("content", "")}]
processed_messages.append({"role": message["role"], "content": processed_content})
payload = {"modelId": model_id,
"system": [{'text': system_message["content"] if system_message else 'you are an intelligent ai assistant'}],
"messages": processed_messages,
"inferenceConfig": {
"temperature": body.get("temperature", 0.5),
"topP": body.get("top_p", 0.9),
"maxTokens": body.get("max_tokens", 8192),
"stopSequences": body.get("stop", []),
},
}
if body.get("stream", False):
return self.stream_response(model_id, payload)
else:
return self.get_completion(model_id, payload)
except Exception as e:
return f"Error: {e}"
def stream_response(self, model_id: str, payload: dict) -> Generator:
streaming_response = self.bedrock_runtime.converse_stream(**payload)
in_resasoning_context = False
for chunk in streaming_response["stream"]:
if in_resasoning_context and "contentBlockStop" in chunk:
in_resasoning_context = False
yield "\n </think> \n\n"
elif "contentBlockDelta" in chunk and "delta" in chunk["contentBlockDelta"]:
if "reasoningContent" in chunk["contentBlockDelta"]["delta"]:
if not in_resasoning_context:
yield "<think>"
in_resasoning_context = True
if "text" in chunk["contentBlockDelta"]["delta"]["reasoningContent"]:
yield chunk["contentBlockDelta"]["delta"]["reasoningContent"]["text"]
elif "text" in chunk["contentBlockDelta"]["delta"]:
yield chunk["contentBlockDelta"]["delta"]["text"]
def get_completion(self, model_id: str, payload: dict) -> str:
response = self.bedrock_runtime.converse(**payload)
return response['output']['message']['content'][0]['text']