mirror of
https://github.com/open-webui/pipelines
synced 2025-05-31 18:48:10 +00:00
Add support for Claude 3.7 thinking mode
- Implemented support for Claude 3.7 thinking mode by adding reasoning effort and budget tokens. - Added checks to ensure combined tokens do not exceed the maximum limit. - Adjusted inference configuration to accommodate thinking mode requirements. - Referenced implementation from https://github.com/open-webui/pipelines/blob/main/examples/pipelines/providers/anthropic_manifold_pipeline.py.
This commit is contained in:
parent
ecc44ebd1e
commit
327062733a
@ -23,6 +23,17 @@ import requests
|
||||
|
||||
from utils.pipelines.main import pop_system_message
|
||||
|
||||
REASONING_EFFORT_BUDGET_TOKEN_MAP = {
|
||||
"none": None,
|
||||
"low": 1024,
|
||||
"medium": 4096,
|
||||
"high": 16384,
|
||||
"max": 32768,
|
||||
}
|
||||
|
||||
# Maximum combined token limit for Claude 3.7
|
||||
MAX_COMBINED_TOKENS = 64000
|
||||
|
||||
|
||||
class Pipeline:
|
||||
class Valves(BaseModel):
|
||||
@ -170,7 +181,44 @@ class Pipeline:
|
||||
},
|
||||
"additionalModelRequestFields": {"top_k": body.get("top_k", 200)}
|
||||
}
|
||||
|
||||
if body.get("stream", False):
|
||||
supports_thinking = "claude-3-7" in model_id
|
||||
reasoning_effort = body.get("reasoning_effort", "none")
|
||||
budget_tokens = REASONING_EFFORT_BUDGET_TOKEN_MAP.get(reasoning_effort)
|
||||
|
||||
# Allow users to input an integer value representing budget tokens
|
||||
if (
|
||||
not budget_tokens
|
||||
and reasoning_effort not in REASONING_EFFORT_BUDGET_TOKEN_MAP.keys()
|
||||
):
|
||||
try:
|
||||
budget_tokens = int(reasoning_effort)
|
||||
except ValueError as e:
|
||||
print("Failed to convert reasoning effort to int", e)
|
||||
budget_tokens = None
|
||||
|
||||
if supports_thinking and budget_tokens:
|
||||
# Check if the combined tokens (budget_tokens + max_tokens) exceeds the limit
|
||||
max_tokens = payload.get("max_tokens", 4096)
|
||||
combined_tokens = budget_tokens + max_tokens
|
||||
|
||||
if combined_tokens > MAX_COMBINED_TOKENS:
|
||||
error_message = f"Error: Combined tokens (budget_tokens {budget_tokens} + max_tokens {max_tokens} = {combined_tokens}) exceeds the maximum limit of {MAX_COMBINED_TOKENS}"
|
||||
print(error_message)
|
||||
return error_message
|
||||
|
||||
payload["inferenceConfig"]["maxTokens"] = combined_tokens
|
||||
payload["additionalModelRequestFields"]["thinking"] = {
|
||||
"type": "enabled",
|
||||
"budget_tokens": budget_tokens,
|
||||
}
|
||||
# Thinking requires temperature 1.0 and does not support top_p, top_k
|
||||
payload["inferenceConfig"]["temperature"] = 1.0
|
||||
if "top_k" in payload["additionalModelRequestFields"]:
|
||||
del payload["additionalModelRequestFields"]["top_k"]
|
||||
if "topP" in payload["inferenceConfig"]:
|
||||
del payload["inferenceConfig"]["topP"]
|
||||
return self.stream_response(model_id, payload)
|
||||
else:
|
||||
return self.get_completion(model_id, payload)
|
||||
@ -194,11 +242,23 @@ class Pipeline:
|
||||
|
||||
def stream_response(self, model_id: str, payload: dict) -> Generator:
|
||||
streaming_response = self.bedrock_runtime.converse_stream(**payload)
|
||||
|
||||
in_resasoning_context = False
|
||||
for chunk in streaming_response["stream"]:
|
||||
if "contentBlockDelta" in chunk:
|
||||
yield chunk["contentBlockDelta"]["delta"]["text"]
|
||||
if in_resasoning_context and "contentBlockStop" in chunk:
|
||||
in_resasoning_context = False
|
||||
yield "\n </think> \n\n"
|
||||
elif "contentBlockDelta" in chunk and "delta" in chunk["contentBlockDelta"]:
|
||||
if "reasoningContent" in chunk["contentBlockDelta"]["delta"]:
|
||||
if not in_resasoning_context:
|
||||
yield "<think>"
|
||||
|
||||
in_resasoning_context = True
|
||||
if "text" in chunk["contentBlockDelta"]["delta"]["reasoningContent"]:
|
||||
yield chunk["contentBlockDelta"]["delta"]["reasoningContent"]["text"]
|
||||
elif "text" in chunk["contentBlockDelta"]["delta"]:
|
||||
yield chunk["contentBlockDelta"]["delta"]["text"]
|
||||
|
||||
def get_completion(self, model_id: str, payload: dict) -> str:
|
||||
response = self.bedrock_runtime.converse(**payload)
|
||||
return response['output']['message']['content'][0]['text']
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user