Add support for Claude 3.7 thinking mode

- Implemented support for Claude 3.7 thinking mode by adding reasoning effort and budget tokens.
- Added checks to ensure combined tokens do not exceed the maximum limit.
- Adjusted inference configuration to accommodate thinking mode requirements.
- Referenced implementation from https://github.com/open-webui/pipelines/blob/main/examples/pipelines/providers/anthropic_manifold_pipeline.py.
This commit is contained in:
Takahiro Kikumoto 2025-03-18 17:38:46 +09:00
parent ecc44ebd1e
commit 327062733a

View File

@ -23,6 +23,17 @@ import requests
from utils.pipelines.main import pop_system_message
REASONING_EFFORT_BUDGET_TOKEN_MAP = {
"none": None,
"low": 1024,
"medium": 4096,
"high": 16384,
"max": 32768,
}
# Maximum combined token limit for Claude 3.7
MAX_COMBINED_TOKENS = 64000
class Pipeline:
class Valves(BaseModel):
@ -170,7 +181,44 @@ class Pipeline:
},
"additionalModelRequestFields": {"top_k": body.get("top_k", 200)}
}
if body.get("stream", False):
supports_thinking = "claude-3-7" in model_id
reasoning_effort = body.get("reasoning_effort", "none")
budget_tokens = REASONING_EFFORT_BUDGET_TOKEN_MAP.get(reasoning_effort)
# Allow users to input an integer value representing budget tokens
if (
not budget_tokens
and reasoning_effort not in REASONING_EFFORT_BUDGET_TOKEN_MAP.keys()
):
try:
budget_tokens = int(reasoning_effort)
except ValueError as e:
print("Failed to convert reasoning effort to int", e)
budget_tokens = None
if supports_thinking and budget_tokens:
# Check if the combined tokens (budget_tokens + max_tokens) exceeds the limit
max_tokens = payload.get("max_tokens", 4096)
combined_tokens = budget_tokens + max_tokens
if combined_tokens > MAX_COMBINED_TOKENS:
error_message = f"Error: Combined tokens (budget_tokens {budget_tokens} + max_tokens {max_tokens} = {combined_tokens}) exceeds the maximum limit of {MAX_COMBINED_TOKENS}"
print(error_message)
return error_message
payload["inferenceConfig"]["maxTokens"] = combined_tokens
payload["additionalModelRequestFields"]["thinking"] = {
"type": "enabled",
"budget_tokens": budget_tokens,
}
# Thinking requires temperature 1.0 and does not support top_p, top_k
payload["inferenceConfig"]["temperature"] = 1.0
if "top_k" in payload["additionalModelRequestFields"]:
del payload["additionalModelRequestFields"]["top_k"]
if "topP" in payload["inferenceConfig"]:
del payload["inferenceConfig"]["topP"]
return self.stream_response(model_id, payload)
else:
return self.get_completion(model_id, payload)
@ -194,11 +242,23 @@ class Pipeline:
def stream_response(self, model_id: str, payload: dict) -> Generator:
streaming_response = self.bedrock_runtime.converse_stream(**payload)
in_resasoning_context = False
for chunk in streaming_response["stream"]:
if "contentBlockDelta" in chunk:
yield chunk["contentBlockDelta"]["delta"]["text"]
if in_resasoning_context and "contentBlockStop" in chunk:
in_resasoning_context = False
yield "\n </think> \n\n"
elif "contentBlockDelta" in chunk and "delta" in chunk["contentBlockDelta"]:
if "reasoningContent" in chunk["contentBlockDelta"]["delta"]:
if not in_resasoning_context:
yield "<think>"
in_resasoning_context = True
if "text" in chunk["contentBlockDelta"]["delta"]["reasoningContent"]:
yield chunk["contentBlockDelta"]["delta"]["reasoningContent"]["text"]
elif "text" in chunk["contentBlockDelta"]["delta"]:
yield chunk["contentBlockDelta"]["delta"]["text"]
def get_completion(self, model_id: str, payload: dict) -> str:
response = self.bedrock_runtime.converse(**payload)
return response['output']['message']['content'][0]['text']