mirror of
https://github.com/open-webui/pipelines
synced 2025-05-11 16:10:45 +00:00
feat: blueprints
This commit is contained in:
parent
be5f596d2a
commit
313f1a7592
172
blueprints/function_calling_blueprint.py
Normal file
172
blueprints/function_calling_blueprint.py
Normal file
@ -0,0 +1,172 @@
|
||||
from typing import List, Optional
|
||||
from pydantic import BaseModel
|
||||
from schemas import OpenAIChatMessage
|
||||
import os
|
||||
import requests
|
||||
import json
|
||||
|
||||
from utils.main import (
|
||||
get_last_user_message,
|
||||
add_or_update_system_message,
|
||||
get_tools_specs,
|
||||
)
|
||||
|
||||
|
||||
class Pipeline:
|
||||
class Valves(BaseModel):
|
||||
# List target pipeline ids (models) that this filter will be connected to.
|
||||
# If you want to connect this filter to all pipelines, you can set pipelines to ["*"]
|
||||
pipelines: List[str] = []
|
||||
|
||||
# Assign a priority level to the filter pipeline.
|
||||
# The priority level determines the order in which the filter pipelines are executed.
|
||||
# The lower the number, the higher the priority.
|
||||
priority: int = 0
|
||||
|
||||
# Valves for function calling
|
||||
OPENAI_API_BASE_URL: str
|
||||
OPENAI_API_KEY: str
|
||||
TASK_MODEL: str
|
||||
TEMPLATE: str
|
||||
|
||||
def __init__(self):
|
||||
# Pipeline filters are only compatible with Open WebUI
|
||||
# You can think of filter pipeline as a middleware that can be used to edit the form data before it is sent to the OpenAI API.
|
||||
self.type = "filter"
|
||||
|
||||
# Assign a unique identifier to the pipeline.
|
||||
# The identifier must be unique across all pipelines.
|
||||
# The identifier must be an alphanumeric string that can include underscores or hyphens. It cannot contain spaces, special characters, slashes, or backslashes.
|
||||
self.id = "function_calling_blueprint"
|
||||
self.name = "Function Calling Blueprint"
|
||||
|
||||
# Initialize valves
|
||||
self.valves = self.Valves(
|
||||
**{
|
||||
"pipelines": ["*"], # Connect to all pipelines
|
||||
"OPENAI_API_BASE_URL": os.getenv(
|
||||
"OPENAI_API_BASE_URL", "https://api.openai.com/v1"
|
||||
),
|
||||
"OPENAI_API_KEY": os.getenv("OPENAI_API_KEY", "YOUR_OPENAI_API_KEY"),
|
||||
"TASK_MODEL": os.getenv("TASK_MODEL", "gpt-3.5-turbo"),
|
||||
"TEMPLATE": """Use the following context as your learned knowledge, inside <context></context> XML tags.
|
||||
<context>
|
||||
{{CONTEXT}}
|
||||
</context>
|
||||
|
||||
When answer to user:
|
||||
- If you don't know, just say that you don't know.
|
||||
- If you don't know when you are not sure, ask for clarification.
|
||||
Avoid mentioning that you obtained the information from the context.
|
||||
And answer according to the language of the user's question.""",
|
||||
}
|
||||
)
|
||||
|
||||
async def on_startup(self):
|
||||
# This function is called when the server is started.
|
||||
print(f"on_startup:{__name__}")
|
||||
pass
|
||||
|
||||
async def on_shutdown(self):
|
||||
# This function is called when the server is stopped.
|
||||
print(f"on_shutdown:{__name__}")
|
||||
pass
|
||||
|
||||
async def inlet(self, body: dict, user: Optional[dict] = None) -> dict:
|
||||
# If title generation is requested, skip the function calling filter
|
||||
if body.get("title", False):
|
||||
return body
|
||||
|
||||
print(f"pipe:{__name__}")
|
||||
print(user)
|
||||
|
||||
# Get the last user message
|
||||
user_message = get_last_user_message(body["messages"])
|
||||
|
||||
# Get the tools specs
|
||||
tools_specs = get_tools_specs(self.tools)
|
||||
|
||||
# System prompt for function calling
|
||||
fc_system_prompt = (
|
||||
f"Tools: {json.dumps(tools_specs, indent=2)}"
|
||||
+ """
|
||||
If a function tool doesn't match the query, return an empty string. Else, pick a function tool, fill in the parameters from the function tool's schema, and return it in the format { "name": \"functionName\", "parameters": { "key": "value" } }. Only pick a function if the user asks. Only return the object. Do not return any other text."
|
||||
"""
|
||||
)
|
||||
|
||||
r = None
|
||||
try:
|
||||
# Call the OpenAI API to get the function response
|
||||
r = requests.post(
|
||||
url=f"{self.valves.OPENAI_API_BASE_URL}/chat/completions",
|
||||
json={
|
||||
"model": self.valves.TASK_MODEL,
|
||||
"messages": [
|
||||
{
|
||||
"role": "system",
|
||||
"content": fc_system_prompt,
|
||||
},
|
||||
{
|
||||
"role": "user",
|
||||
"content": "History:\n"
|
||||
+ "\n".join(
|
||||
[
|
||||
f"{message['role']}: {message['content']}"
|
||||
for message in body["messages"][::-1][:4]
|
||||
]
|
||||
)
|
||||
+ f"Query: {user_message}",
|
||||
},
|
||||
],
|
||||
# TODO: dynamically add response_format?
|
||||
# "response_format": {"type": "json_object"},
|
||||
},
|
||||
headers={
|
||||
"Authorization": f"Bearer {self.valves.OPENAI_API_KEY}",
|
||||
"Content-Type": "application/json",
|
||||
},
|
||||
stream=False,
|
||||
)
|
||||
r.raise_for_status()
|
||||
|
||||
response = r.json()
|
||||
content = response["choices"][0]["message"]["content"]
|
||||
|
||||
# Parse the function response
|
||||
if content != "":
|
||||
result = json.loads(content)
|
||||
print(result)
|
||||
|
||||
# Call the function
|
||||
if "name" in result:
|
||||
function = getattr(self.tools, result["name"])
|
||||
function_result = None
|
||||
try:
|
||||
function_result = function(**result["parameters"])
|
||||
except Exception as e:
|
||||
print(e)
|
||||
|
||||
# Add the function result to the system prompt
|
||||
if function_result:
|
||||
system_prompt = self.valves.TEMPLATE.replace(
|
||||
"{{CONTEXT}}", function_result
|
||||
)
|
||||
|
||||
print(system_prompt)
|
||||
messages = add_or_update_system_message(
|
||||
system_prompt, body["messages"]
|
||||
)
|
||||
|
||||
# Return the updated messages
|
||||
return {**body, "messages": messages}
|
||||
|
||||
except Exception as e:
|
||||
print(f"Error: {e}")
|
||||
|
||||
if r:
|
||||
try:
|
||||
print(r.json())
|
||||
except:
|
||||
pass
|
||||
|
||||
return body
|
@ -1,231 +1,80 @@
|
||||
from typing import List, Optional
|
||||
from pydantic import BaseModel
|
||||
from schemas import OpenAIChatMessage
|
||||
import os
|
||||
import requests
|
||||
import json
|
||||
|
||||
from utils.main import (
|
||||
get_last_user_message,
|
||||
add_or_update_system_message,
|
||||
get_function_specs,
|
||||
)
|
||||
from typing import Literal
|
||||
from typing import Literal, List, Optional
|
||||
from blueprints.function_calling_blueprint import Pipeline as FunctionCallingBlueprint
|
||||
|
||||
|
||||
class Pipeline:
|
||||
class Pipeline(FunctionCallingBlueprint):
|
||||
class Valves(FunctionCallingBlueprint.Valves):
|
||||
# Add your custom parameters here
|
||||
OPENWEATHERMAP_API_KEY: str = ""
|
||||
pass
|
||||
|
||||
class Tools:
|
||||
def __init__(self, pipeline) -> None:
|
||||
self.pipeline = pipeline
|
||||
|
||||
def get_current_weather(
|
||||
self,
|
||||
location: str,
|
||||
unit: Literal["metric", "fahrenheit"] = "fahrenheit",
|
||||
) -> str:
|
||||
"""
|
||||
Get the current weather for a location. If the location is not found, return an empty string.
|
||||
|
||||
:param location: The location to get the weather for.
|
||||
:param unit: The unit to get the weather in. Default is fahrenheit.
|
||||
:return: The current weather for the location.
|
||||
"""
|
||||
|
||||
# https://openweathermap.org/api
|
||||
|
||||
if self.pipeline.valves.OPENWEATHERMAP_API_KEY == "":
|
||||
return "OpenWeatherMap API Key not set, ask the user to set it up."
|
||||
else:
|
||||
units = "imperial" if unit == "fahrenheit" else "metric"
|
||||
params = {
|
||||
"q": location,
|
||||
"appid": self.pipeline.valves.OPENWEATHERMAP_API_KEY,
|
||||
"units": units,
|
||||
}
|
||||
|
||||
response = requests.get(
|
||||
"http://api.openweathermap.org/data/2.5/weather", params=params
|
||||
)
|
||||
response.raise_for_status() # Raises an HTTPError for bad responses
|
||||
data = response.json()
|
||||
|
||||
weather_description = data["weather"][0]["description"]
|
||||
temperature = data["main"]["temp"]
|
||||
|
||||
return f"{location}: {weather_description.capitalize()}, {temperature}°{unit.capitalize()[0]}"
|
||||
|
||||
def calculator(self, equation: str) -> str:
|
||||
"""
|
||||
Calculate the result of an equation.
|
||||
|
||||
:param equation: The equation to calculate.
|
||||
"""
|
||||
|
||||
# Avoid using eval in production code
|
||||
# https://nedbatchelder.com/blog/201206/eval_really_is_dangerous.html
|
||||
try:
|
||||
result = eval(equation)
|
||||
return f"{equation} = {result}"
|
||||
except Exception as e:
|
||||
print(e)
|
||||
return "Invalid equation"
|
||||
|
||||
def __init__(self):
|
||||
# Pipeline filters are only compatible with Open WebUI
|
||||
# You can think of filter pipeline as a middleware that can be used to edit the form data before it is sent to the OpenAI API.
|
||||
self.type = "filter"
|
||||
|
||||
# Assign a unique identifier to the pipeline.
|
||||
# The identifier must be unique across all pipelines.
|
||||
# The identifier must be an alphanumeric string that can include underscores or hyphens. It cannot contain spaces, special characters, slashes, or backslashes.
|
||||
self.id = "function_calling_filter_pipeline"
|
||||
self.name = "Function Calling Filter"
|
||||
|
||||
class Valves(BaseModel):
|
||||
# List target pipeline ids (models) that this filter will be connected to.
|
||||
# If you want to connect this filter to all pipelines, you can set pipelines to ["*"]
|
||||
pipelines: List[str] = []
|
||||
|
||||
# Assign a priority level to the filter pipeline.
|
||||
# The priority level determines the order in which the filter pipelines are executed.
|
||||
# The lower the number, the higher the priority.
|
||||
priority: int = 0
|
||||
|
||||
# Valves for function calling
|
||||
OPENAI_API_BASE_URL: str
|
||||
OPENAI_API_KEY: str
|
||||
TASK_MODEL: str
|
||||
TEMPLATE: str
|
||||
|
||||
OPENWEATHERMAP_API_KEY: str = ""
|
||||
|
||||
# Initialize valves
|
||||
self.valves = Valves(
|
||||
super().__init__()
|
||||
self.id = "my_tools_pipeline"
|
||||
self.name = "My Tools Pipeline"
|
||||
self.valves = self.Valves(
|
||||
**{
|
||||
**self.valves.model_dump(),
|
||||
"pipelines": ["*"], # Connect to all pipelines
|
||||
"OPENAI_API_BASE_URL": "https://api.openai.com/v1",
|
||||
"OPENAI_API_KEY": os.getenv("OPENAI_API_KEY", "YOUR_OPENAI_API_KEY"),
|
||||
"TASK_MODEL": "gpt-3.5-turbo",
|
||||
"TEMPLATE": """Use the following context as your learned knowledge, inside <context></context> XML tags.
|
||||
<context>
|
||||
{{CONTEXT}}
|
||||
</context>
|
||||
|
||||
When answer to user:
|
||||
- If you don't know, just say that you don't know.
|
||||
- If you don't know when you are not sure, ask for clarification.
|
||||
Avoid mentioning that you obtained the information from the context.
|
||||
And answer according to the language of the user's question.""",
|
||||
}
|
||||
"OPENWEATHERMAP_API_KEY": os.getenv("OPENWEATHERMAP_API_KEY", ""),
|
||||
},
|
||||
)
|
||||
|
||||
class Functions:
|
||||
def __init__(self, pipeline) -> None:
|
||||
self.pipeline = pipeline
|
||||
|
||||
def get_current_weather(
|
||||
self,
|
||||
location: str,
|
||||
unit: Literal["metric", "fahrenheit"] = "fahrenheit",
|
||||
) -> str:
|
||||
"""
|
||||
Get the current weather for a location. If the location is not found, return an empty string.
|
||||
|
||||
:param location: The location to get the weather for.
|
||||
:param unit: The unit to get the weather in. Default is fahrenheit.
|
||||
:return: The current weather for the location.
|
||||
"""
|
||||
|
||||
# https://openweathermap.org/api
|
||||
|
||||
if self.pipeline.valves.OPENWEATHERMAP_API_KEY == "":
|
||||
return "OpenWeatherMap API Key not set, ask the user to set it up."
|
||||
else:
|
||||
units = "imperial" if unit == "fahrenheit" else "metric"
|
||||
params = {
|
||||
"q": location,
|
||||
"appid": self.pipeline.valves.OPENWEATHERMAP_API_KEY,
|
||||
"units": units,
|
||||
}
|
||||
|
||||
response = requests.get(
|
||||
"http://api.openweathermap.org/data/2.5/weather", params=params
|
||||
)
|
||||
response.raise_for_status() # Raises an HTTPError for bad responses
|
||||
data = response.json()
|
||||
|
||||
weather_description = data["weather"][0]["description"]
|
||||
temperature = data["main"]["temp"]
|
||||
|
||||
return f"{location}: {weather_description.capitalize()}, {temperature}°{unit.capitalize()[0]}"
|
||||
|
||||
def calculator(self, equation: str) -> str:
|
||||
"""
|
||||
Calculate the result of an equation.
|
||||
|
||||
:param equation: The equation to calculate.
|
||||
"""
|
||||
|
||||
# Avoid using eval in production code
|
||||
# https://nedbatchelder.com/blog/201206/eval_really_is_dangerous.html
|
||||
try:
|
||||
result = eval(equation)
|
||||
return f"{equation} = {result}"
|
||||
except Exception as e:
|
||||
print(e)
|
||||
return "Invalid equation"
|
||||
|
||||
self.functions = Functions(self)
|
||||
|
||||
async def on_startup(self):
|
||||
# This function is called when the server is started.
|
||||
print(f"on_startup:{__name__}")
|
||||
pass
|
||||
|
||||
async def on_shutdown(self):
|
||||
# This function is called when the server is stopped.
|
||||
print(f"on_shutdown:{__name__}")
|
||||
pass
|
||||
|
||||
async def inlet(self, body: dict, user: Optional[dict] = None) -> dict:
|
||||
# If title generation is requested, skip the function calling filter
|
||||
if body.get("title", False):
|
||||
return body
|
||||
|
||||
print(f"pipe:{__name__}")
|
||||
print(user)
|
||||
|
||||
# Get the last user message
|
||||
user_message = get_last_user_message(body["messages"])
|
||||
|
||||
# Get the function specs
|
||||
function_specs = get_function_specs(self.functions)
|
||||
|
||||
# System prompt for function calling
|
||||
fc_system_prompt = (
|
||||
f"Functions: {json.dumps(function_specs, indent=2)}"
|
||||
+ """
|
||||
If a function doesn't match the query, return an empty string. Else, pick a function, fill in the parameters from the function's schema, and return it in the format { "name": \"functionName\", "parameters": { "key": "value" } }. Only pick a function if the user asks. Only return the object. Do not return any other text."
|
||||
"""
|
||||
)
|
||||
|
||||
r = None
|
||||
try:
|
||||
# Call the OpenAI API to get the function response
|
||||
r = requests.post(
|
||||
url=f"{self.valves.OPENAI_API_BASE_URL}/chat/completions",
|
||||
json={
|
||||
"model": self.valves.TASK_MODEL,
|
||||
"messages": [
|
||||
{
|
||||
"role": "system",
|
||||
"content": fc_system_prompt,
|
||||
},
|
||||
{
|
||||
"role": "user",
|
||||
"content": "History:\n"
|
||||
+ "\n".join(
|
||||
[
|
||||
f"{message['role']}: {message['content']}"
|
||||
for message in body["messages"][::-1][:4]
|
||||
]
|
||||
)
|
||||
+ f"Query: {user_message}",
|
||||
},
|
||||
],
|
||||
# TODO: dynamically add response_format?
|
||||
# "response_format": {"type": "json_object"},
|
||||
},
|
||||
headers={
|
||||
"Authorization": f"Bearer {self.valves.OPENAI_API_KEY}",
|
||||
"Content-Type": "application/json",
|
||||
},
|
||||
stream=False,
|
||||
)
|
||||
r.raise_for_status()
|
||||
|
||||
response = r.json()
|
||||
content = response["choices"][0]["message"]["content"]
|
||||
|
||||
# Parse the function response
|
||||
if content != "":
|
||||
result = json.loads(content)
|
||||
print(result)
|
||||
|
||||
# Call the function
|
||||
if "name" in result:
|
||||
function = getattr(self.functions, result["name"])
|
||||
function_result = None
|
||||
try:
|
||||
function_result = function(**result["parameters"])
|
||||
except Exception as e:
|
||||
print(e)
|
||||
|
||||
# Add the function result to the system prompt
|
||||
if function_result:
|
||||
system_prompt = self.valves.TEMPLATE.replace(
|
||||
"{{CONTEXT}}", function_result
|
||||
)
|
||||
|
||||
print(system_prompt)
|
||||
messages = add_or_update_system_message(
|
||||
system_prompt, body["messages"]
|
||||
)
|
||||
|
||||
# Return the updated messages
|
||||
return {**body, "messages": messages}
|
||||
|
||||
except Exception as e:
|
||||
print(f"Error: {e}")
|
||||
|
||||
if r:
|
||||
try:
|
||||
print(r.json())
|
||||
except:
|
||||
pass
|
||||
|
||||
return body
|
||||
self.tools = self.Tools(self)
|
||||
|
1
main.py
1
main.py
@ -203,7 +203,6 @@ async def get_models():
|
||||
Returns the available pipelines
|
||||
"""
|
||||
app.state.PIPELINES = get_all_pipelines()
|
||||
|
||||
return {
|
||||
"data": [
|
||||
{
|
||||
|
@ -80,12 +80,11 @@ def doc_to_dict(docstring):
|
||||
return ret_dict
|
||||
|
||||
|
||||
def get_function_specs(functions) -> List[dict]:
|
||||
|
||||
def get_tools_specs(tools) -> List[dict]:
|
||||
function_list = [
|
||||
{"name": func, "function": getattr(functions, func)}
|
||||
for func in dir(functions)
|
||||
if callable(getattr(functions, func)) and not func.startswith("__")
|
||||
{"name": func, "function": getattr(tools, func)}
|
||||
for func in dir(tools)
|
||||
if callable(getattr(tools, func)) and not func.startswith("__")
|
||||
]
|
||||
|
||||
specs = []
|
||||
|
Loading…
Reference in New Issue
Block a user