feat: blueprints

This commit is contained in:
Timothy J. Baek 2024-06-01 11:24:07 -07:00
parent be5f596d2a
commit 313f1a7592
4 changed files with 248 additions and 229 deletions

View File

@ -0,0 +1,172 @@
from typing import List, Optional
from pydantic import BaseModel
from schemas import OpenAIChatMessage
import os
import requests
import json
from utils.main import (
get_last_user_message,
add_or_update_system_message,
get_tools_specs,
)
class Pipeline:
class Valves(BaseModel):
# List target pipeline ids (models) that this filter will be connected to.
# If you want to connect this filter to all pipelines, you can set pipelines to ["*"]
pipelines: List[str] = []
# Assign a priority level to the filter pipeline.
# The priority level determines the order in which the filter pipelines are executed.
# The lower the number, the higher the priority.
priority: int = 0
# Valves for function calling
OPENAI_API_BASE_URL: str
OPENAI_API_KEY: str
TASK_MODEL: str
TEMPLATE: str
def __init__(self):
# Pipeline filters are only compatible with Open WebUI
# You can think of filter pipeline as a middleware that can be used to edit the form data before it is sent to the OpenAI API.
self.type = "filter"
# Assign a unique identifier to the pipeline.
# The identifier must be unique across all pipelines.
# The identifier must be an alphanumeric string that can include underscores or hyphens. It cannot contain spaces, special characters, slashes, or backslashes.
self.id = "function_calling_blueprint"
self.name = "Function Calling Blueprint"
# Initialize valves
self.valves = self.Valves(
**{
"pipelines": ["*"], # Connect to all pipelines
"OPENAI_API_BASE_URL": os.getenv(
"OPENAI_API_BASE_URL", "https://api.openai.com/v1"
),
"OPENAI_API_KEY": os.getenv("OPENAI_API_KEY", "YOUR_OPENAI_API_KEY"),
"TASK_MODEL": os.getenv("TASK_MODEL", "gpt-3.5-turbo"),
"TEMPLATE": """Use the following context as your learned knowledge, inside <context></context> XML tags.
<context>
{{CONTEXT}}
</context>
When answer to user:
- If you don't know, just say that you don't know.
- If you don't know when you are not sure, ask for clarification.
Avoid mentioning that you obtained the information from the context.
And answer according to the language of the user's question.""",
}
)
async def on_startup(self):
# This function is called when the server is started.
print(f"on_startup:{__name__}")
pass
async def on_shutdown(self):
# This function is called when the server is stopped.
print(f"on_shutdown:{__name__}")
pass
async def inlet(self, body: dict, user: Optional[dict] = None) -> dict:
# If title generation is requested, skip the function calling filter
if body.get("title", False):
return body
print(f"pipe:{__name__}")
print(user)
# Get the last user message
user_message = get_last_user_message(body["messages"])
# Get the tools specs
tools_specs = get_tools_specs(self.tools)
# System prompt for function calling
fc_system_prompt = (
f"Tools: {json.dumps(tools_specs, indent=2)}"
+ """
If a function tool doesn't match the query, return an empty string. Else, pick a function tool, fill in the parameters from the function tool's schema, and return it in the format { "name": \"functionName\", "parameters": { "key": "value" } }. Only pick a function if the user asks. Only return the object. Do not return any other text."
"""
)
r = None
try:
# Call the OpenAI API to get the function response
r = requests.post(
url=f"{self.valves.OPENAI_API_BASE_URL}/chat/completions",
json={
"model": self.valves.TASK_MODEL,
"messages": [
{
"role": "system",
"content": fc_system_prompt,
},
{
"role": "user",
"content": "History:\n"
+ "\n".join(
[
f"{message['role']}: {message['content']}"
for message in body["messages"][::-1][:4]
]
)
+ f"Query: {user_message}",
},
],
# TODO: dynamically add response_format?
# "response_format": {"type": "json_object"},
},
headers={
"Authorization": f"Bearer {self.valves.OPENAI_API_KEY}",
"Content-Type": "application/json",
},
stream=False,
)
r.raise_for_status()
response = r.json()
content = response["choices"][0]["message"]["content"]
# Parse the function response
if content != "":
result = json.loads(content)
print(result)
# Call the function
if "name" in result:
function = getattr(self.tools, result["name"])
function_result = None
try:
function_result = function(**result["parameters"])
except Exception as e:
print(e)
# Add the function result to the system prompt
if function_result:
system_prompt = self.valves.TEMPLATE.replace(
"{{CONTEXT}}", function_result
)
print(system_prompt)
messages = add_or_update_system_message(
system_prompt, body["messages"]
)
# Return the updated messages
return {**body, "messages": messages}
except Exception as e:
print(f"Error: {e}")
if r:
try:
print(r.json())
except:
pass
return body

View File

@ -1,231 +1,80 @@
from typing import List, Optional
from pydantic import BaseModel
from schemas import OpenAIChatMessage
import os
import requests
import json
from utils.main import (
get_last_user_message,
add_or_update_system_message,
get_function_specs,
)
from typing import Literal
from typing import Literal, List, Optional
from blueprints.function_calling_blueprint import Pipeline as FunctionCallingBlueprint
class Pipeline:
class Pipeline(FunctionCallingBlueprint):
class Valves(FunctionCallingBlueprint.Valves):
# Add your custom parameters here
OPENWEATHERMAP_API_KEY: str = ""
pass
class Tools:
def __init__(self, pipeline) -> None:
self.pipeline = pipeline
def get_current_weather(
self,
location: str,
unit: Literal["metric", "fahrenheit"] = "fahrenheit",
) -> str:
"""
Get the current weather for a location. If the location is not found, return an empty string.
:param location: The location to get the weather for.
:param unit: The unit to get the weather in. Default is fahrenheit.
:return: The current weather for the location.
"""
# https://openweathermap.org/api
if self.pipeline.valves.OPENWEATHERMAP_API_KEY == "":
return "OpenWeatherMap API Key not set, ask the user to set it up."
else:
units = "imperial" if unit == "fahrenheit" else "metric"
params = {
"q": location,
"appid": self.pipeline.valves.OPENWEATHERMAP_API_KEY,
"units": units,
}
response = requests.get(
"http://api.openweathermap.org/data/2.5/weather", params=params
)
response.raise_for_status() # Raises an HTTPError for bad responses
data = response.json()
weather_description = data["weather"][0]["description"]
temperature = data["main"]["temp"]
return f"{location}: {weather_description.capitalize()}, {temperature}°{unit.capitalize()[0]}"
def calculator(self, equation: str) -> str:
"""
Calculate the result of an equation.
:param equation: The equation to calculate.
"""
# Avoid using eval in production code
# https://nedbatchelder.com/blog/201206/eval_really_is_dangerous.html
try:
result = eval(equation)
return f"{equation} = {result}"
except Exception as e:
print(e)
return "Invalid equation"
def __init__(self):
# Pipeline filters are only compatible with Open WebUI
# You can think of filter pipeline as a middleware that can be used to edit the form data before it is sent to the OpenAI API.
self.type = "filter"
# Assign a unique identifier to the pipeline.
# The identifier must be unique across all pipelines.
# The identifier must be an alphanumeric string that can include underscores or hyphens. It cannot contain spaces, special characters, slashes, or backslashes.
self.id = "function_calling_filter_pipeline"
self.name = "Function Calling Filter"
class Valves(BaseModel):
# List target pipeline ids (models) that this filter will be connected to.
# If you want to connect this filter to all pipelines, you can set pipelines to ["*"]
pipelines: List[str] = []
# Assign a priority level to the filter pipeline.
# The priority level determines the order in which the filter pipelines are executed.
# The lower the number, the higher the priority.
priority: int = 0
# Valves for function calling
OPENAI_API_BASE_URL: str
OPENAI_API_KEY: str
TASK_MODEL: str
TEMPLATE: str
OPENWEATHERMAP_API_KEY: str = ""
# Initialize valves
self.valves = Valves(
super().__init__()
self.id = "my_tools_pipeline"
self.name = "My Tools Pipeline"
self.valves = self.Valves(
**{
**self.valves.model_dump(),
"pipelines": ["*"], # Connect to all pipelines
"OPENAI_API_BASE_URL": "https://api.openai.com/v1",
"OPENAI_API_KEY": os.getenv("OPENAI_API_KEY", "YOUR_OPENAI_API_KEY"),
"TASK_MODEL": "gpt-3.5-turbo",
"TEMPLATE": """Use the following context as your learned knowledge, inside <context></context> XML tags.
<context>
{{CONTEXT}}
</context>
When answer to user:
- If you don't know, just say that you don't know.
- If you don't know when you are not sure, ask for clarification.
Avoid mentioning that you obtained the information from the context.
And answer according to the language of the user's question.""",
}
"OPENWEATHERMAP_API_KEY": os.getenv("OPENWEATHERMAP_API_KEY", ""),
},
)
class Functions:
def __init__(self, pipeline) -> None:
self.pipeline = pipeline
def get_current_weather(
self,
location: str,
unit: Literal["metric", "fahrenheit"] = "fahrenheit",
) -> str:
"""
Get the current weather for a location. If the location is not found, return an empty string.
:param location: The location to get the weather for.
:param unit: The unit to get the weather in. Default is fahrenheit.
:return: The current weather for the location.
"""
# https://openweathermap.org/api
if self.pipeline.valves.OPENWEATHERMAP_API_KEY == "":
return "OpenWeatherMap API Key not set, ask the user to set it up."
else:
units = "imperial" if unit == "fahrenheit" else "metric"
params = {
"q": location,
"appid": self.pipeline.valves.OPENWEATHERMAP_API_KEY,
"units": units,
}
response = requests.get(
"http://api.openweathermap.org/data/2.5/weather", params=params
)
response.raise_for_status() # Raises an HTTPError for bad responses
data = response.json()
weather_description = data["weather"][0]["description"]
temperature = data["main"]["temp"]
return f"{location}: {weather_description.capitalize()}, {temperature}°{unit.capitalize()[0]}"
def calculator(self, equation: str) -> str:
"""
Calculate the result of an equation.
:param equation: The equation to calculate.
"""
# Avoid using eval in production code
# https://nedbatchelder.com/blog/201206/eval_really_is_dangerous.html
try:
result = eval(equation)
return f"{equation} = {result}"
except Exception as e:
print(e)
return "Invalid equation"
self.functions = Functions(self)
async def on_startup(self):
# This function is called when the server is started.
print(f"on_startup:{__name__}")
pass
async def on_shutdown(self):
# This function is called when the server is stopped.
print(f"on_shutdown:{__name__}")
pass
async def inlet(self, body: dict, user: Optional[dict] = None) -> dict:
# If title generation is requested, skip the function calling filter
if body.get("title", False):
return body
print(f"pipe:{__name__}")
print(user)
# Get the last user message
user_message = get_last_user_message(body["messages"])
# Get the function specs
function_specs = get_function_specs(self.functions)
# System prompt for function calling
fc_system_prompt = (
f"Functions: {json.dumps(function_specs, indent=2)}"
+ """
If a function doesn't match the query, return an empty string. Else, pick a function, fill in the parameters from the function's schema, and return it in the format { "name": \"functionName\", "parameters": { "key": "value" } }. Only pick a function if the user asks. Only return the object. Do not return any other text."
"""
)
r = None
try:
# Call the OpenAI API to get the function response
r = requests.post(
url=f"{self.valves.OPENAI_API_BASE_URL}/chat/completions",
json={
"model": self.valves.TASK_MODEL,
"messages": [
{
"role": "system",
"content": fc_system_prompt,
},
{
"role": "user",
"content": "History:\n"
+ "\n".join(
[
f"{message['role']}: {message['content']}"
for message in body["messages"][::-1][:4]
]
)
+ f"Query: {user_message}",
},
],
# TODO: dynamically add response_format?
# "response_format": {"type": "json_object"},
},
headers={
"Authorization": f"Bearer {self.valves.OPENAI_API_KEY}",
"Content-Type": "application/json",
},
stream=False,
)
r.raise_for_status()
response = r.json()
content = response["choices"][0]["message"]["content"]
# Parse the function response
if content != "":
result = json.loads(content)
print(result)
# Call the function
if "name" in result:
function = getattr(self.functions, result["name"])
function_result = None
try:
function_result = function(**result["parameters"])
except Exception as e:
print(e)
# Add the function result to the system prompt
if function_result:
system_prompt = self.valves.TEMPLATE.replace(
"{{CONTEXT}}", function_result
)
print(system_prompt)
messages = add_or_update_system_message(
system_prompt, body["messages"]
)
# Return the updated messages
return {**body, "messages": messages}
except Exception as e:
print(f"Error: {e}")
if r:
try:
print(r.json())
except:
pass
return body
self.tools = self.Tools(self)

View File

@ -203,7 +203,6 @@ async def get_models():
Returns the available pipelines
"""
app.state.PIPELINES = get_all_pipelines()
return {
"data": [
{

View File

@ -80,12 +80,11 @@ def doc_to_dict(docstring):
return ret_dict
def get_function_specs(functions) -> List[dict]:
def get_tools_specs(tools) -> List[dict]:
function_list = [
{"name": func, "function": getattr(functions, func)}
for func in dir(functions)
if callable(getattr(functions, func)) and not func.startswith("__")
{"name": func, "function": getattr(tools, func)}
for func in dir(tools)
if callable(getattr(tools, func)) and not func.startswith("__")
]
specs = []