mirror of
https://github.com/open-webui/pipelines
synced 2025-05-10 07:30:47 +00:00
Working DataDog pipeline
This commit is contained in:
parent
93cb893666
commit
30fa228a84
@ -1 +1,2 @@
|
||||
.venv
|
||||
.env
|
1
.gitignore
vendored
1
.gitignore
vendored
@ -9,3 +9,4 @@ pipelines/*
|
||||
.DS_Store
|
||||
|
||||
.venv
|
||||
venv/
|
58
Dockerfile.rust
Normal file
58
Dockerfile.rust
Normal file
@ -0,0 +1,58 @@
|
||||
FROM python:3.11-slim-bookworm as base
|
||||
|
||||
# Use args
|
||||
ARG USE_CUDA
|
||||
ARG USE_CUDA_VER
|
||||
|
||||
## Basis ##
|
||||
ENV ENV=prod \
|
||||
PORT=9099 \
|
||||
# pass build args to the build
|
||||
USE_CUDA_DOCKER=${USE_CUDA} \
|
||||
USE_CUDA_DOCKER_VER=${USE_CUDA_VER}
|
||||
|
||||
|
||||
# Install GCC and build tools
|
||||
RUN apt-get update && \
|
||||
apt-get install -y gcc build-essential curl git && \
|
||||
apt-get clean && \
|
||||
rm -rf /var/lib/apt/lists/*
|
||||
|
||||
|
||||
WORKDIR /app
|
||||
|
||||
# Install Python dependencies
|
||||
COPY ./requirements.txt .
|
||||
RUN pip3 install uv && \
|
||||
if [ "$USE_CUDA" = "true" ]; then \
|
||||
pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/$USE_CUDA_DOCKER_VER --no-cache-dir && \
|
||||
uv pip install --system -r requirements.txt --no-cache-dir; \
|
||||
else \
|
||||
pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cpu --no-cache-dir && \
|
||||
uv pip install --system -r requirements.txt --no-cache-dir; \
|
||||
fi
|
||||
|
||||
# Copy the application code
|
||||
COPY . .
|
||||
|
||||
# Install Rust compiler and ddtrace which are required for DataDog components
|
||||
RUN curl --proto '=https' --tlsv1.2 -sSf https://sh.rustup.rs | sh -s -- -y
|
||||
|
||||
# Set up the Rust environment
|
||||
ENV PATH="/root/.cargo/bin:${PATH}"
|
||||
RUN /root/.cargo/bin/rustup default stable
|
||||
|
||||
# DEBUG - check that Rust installed correctly
|
||||
RUN cargo --version
|
||||
|
||||
# Set the working directory to the Pipelines app dir
|
||||
WORKDIR /app
|
||||
|
||||
# Install Python dependencies
|
||||
RUN pip3 install git+https://github.com/DataDog/dd-trace-py.git@main
|
||||
|
||||
# Expose the port
|
||||
ENV HOST="0.0.0.0"
|
||||
ENV PORT="9099"
|
||||
|
||||
ENTRYPOINT [ "bash", "start.sh" ]
|
9
dev-docker.sh
Executable file
9
dev-docker.sh
Executable file
@ -0,0 +1,9 @@
|
||||
# Removes any existing Open WebUI and Pipelines containers/ volumes - uncomment if you need a fresh start
|
||||
# docker rm --force pipelines
|
||||
# docker rm --force open-webui
|
||||
# docker volume rm pipelines
|
||||
# docker volume rm open-webui
|
||||
|
||||
# Runs the containers with Ollama image for Open WebUI and the Pipelines endpoint in place
|
||||
docker run -d -p 9099:9099 --add-host=host.docker.internal:host-gateway -v pipelines:/app/pipelines --name pipelines --restart always --env-file .env ghcr.io/open-webui/pipelines:latest
|
||||
docker run -d -p 3000:8080 -v ~/.ollama:/root/.ollama -v open-webui:/app/backend/data --name open-webui --restart always -e OPENAI_API_BASE_URL=http://host.docker.internal:9099 -e OPENAI_API_KEY=0p3n-w3bu! ghcr.io/open-webui/open-webui:ollama
|
128
examples/filters/datadog_filter_pipeline.py
Normal file
128
examples/filters/datadog_filter_pipeline.py
Normal file
@ -0,0 +1,128 @@
|
||||
"""
|
||||
title: DataDog Filter Pipeline
|
||||
author: 0xThresh
|
||||
date: 2024-06-06
|
||||
version: 1.0
|
||||
license: MIT
|
||||
description: A filter pipeline that sends traces to DataDog.
|
||||
requirements: git+https://github.com/DataDog/dd-trace-py.git@main
|
||||
environment_variables: DD_LLMOBS_AGENTLESS_ENABLED, DD_LLMOBS_ENABLED, DD_LLMOBS_APP_NAME, DD_API_KEY, DD_SITE
|
||||
"""
|
||||
|
||||
from typing import List, Optional
|
||||
import os
|
||||
|
||||
from utils.pipelines.main import get_last_user_message, get_last_assistant_message
|
||||
from pydantic import BaseModel
|
||||
from ddtrace.llmobs import LLMObs
|
||||
|
||||
|
||||
class Pipeline:
|
||||
class Valves(BaseModel):
|
||||
# List target pipeline ids (models) that this filter will be connected to.
|
||||
# If you want to connect this filter to all pipelines, you can set pipelines to ["*"]
|
||||
# e.g. ["llama3:latest", "gpt-3.5-turbo"]
|
||||
pipelines: List[str] = []
|
||||
|
||||
# Assign a priority level to the filter pipeline.
|
||||
# The priority level determines the order in which the filter pipelines are executed.
|
||||
# The lower the number, the higher the priority.
|
||||
priority: int = 0
|
||||
|
||||
# Valves
|
||||
dd_api_key: str
|
||||
dd_site: str
|
||||
ml_app: str
|
||||
|
||||
def __init__(self):
|
||||
# Pipeline filters are only compatible with Open WebUI
|
||||
# You can think of filter pipeline as a middleware that can be used to edit the form data before it is sent to the OpenAI API.
|
||||
self.type = "filter"
|
||||
|
||||
# Optionally, you can set the id and name of the pipeline.
|
||||
# Best practice is to not specify the id so that it can be automatically inferred from the filename, so that users can install multiple versions of the same pipeline.
|
||||
# The identifier must be unique across all pipelines.
|
||||
# The identifier must be an alphanumeric string that can include underscores or hyphens. It cannot contain spaces, special characters, slashes, or backslashes.
|
||||
# self.id = "datadog_filter_pipeline"
|
||||
self.name = "DataDog Filter"
|
||||
|
||||
# Initialize
|
||||
self.valves = self.Valves(
|
||||
**{
|
||||
"pipelines": ["*"], # Connect to all pipelines
|
||||
"dd_api_key": os.getenv("DD_API_KEY"),
|
||||
"dd_site": os.getenv("DD_SITE", "datadoghq.com"),
|
||||
"ml_app": os.getenv("ML_APP", "pipelines-test"),
|
||||
}
|
||||
)
|
||||
|
||||
# DataDog LLMOBS docs: https://docs.datadoghq.com/tracing/llm_observability/sdk/
|
||||
self.LLMObs = LLMObs()
|
||||
self.llm_span = None
|
||||
self.chat_generations = {}
|
||||
pass
|
||||
|
||||
async def on_startup(self):
|
||||
# This function is called when the server is started.
|
||||
print(f"on_startup:{__name__}")
|
||||
self.set_dd()
|
||||
pass
|
||||
|
||||
async def on_shutdown(self):
|
||||
# This function is called when the server is stopped.
|
||||
print(f"on_shutdown:{__name__}")
|
||||
self.LLMObs.flush()
|
||||
pass
|
||||
|
||||
async def on_valves_updated(self):
|
||||
# This function is called when the valves are updated.
|
||||
self.set_dd()
|
||||
pass
|
||||
|
||||
def set_dd(self):
|
||||
self.LLMObs.enable(
|
||||
ml_app=self.valves.ml_app,
|
||||
api_key=self.valves.dd_api_key,
|
||||
site=self.valves.dd_site,
|
||||
agentless_enabled=True,
|
||||
integrations_enabled=True,
|
||||
)
|
||||
|
||||
async def inlet(self, body: dict, user: Optional[dict] = None) -> dict:
|
||||
print(f"inlet:{__name__}")
|
||||
|
||||
self.llm_span = self.LLMObs.llm(
|
||||
model_name=body["model"],
|
||||
name=f"filter:{__name__}",
|
||||
model_provider="open-webui",
|
||||
session_id=body["chat_id"],
|
||||
ml_app=self.valves.ml_app
|
||||
)
|
||||
|
||||
self.LLMObs.annotate(
|
||||
span = self.llm_span,
|
||||
input_data = get_last_user_message(body["messages"]),
|
||||
)
|
||||
|
||||
print("SPAN: ")
|
||||
print(self.llm_span)
|
||||
|
||||
return body
|
||||
|
||||
|
||||
async def outlet(self, body: dict, user: Optional[dict] = None) -> dict:
|
||||
print(f"outlet:{__name__}")
|
||||
if body["chat_id"] not in self.chat_generations:
|
||||
return body
|
||||
print("SELF LLM SPAN")
|
||||
print(self.llm_span)
|
||||
#self.set_dd()
|
||||
self.LLMObs.annotate(
|
||||
span = self.llm_span,
|
||||
output_data = get_last_assistant_message(body["messages"]),
|
||||
)
|
||||
|
||||
self.llm_span.finish()
|
||||
self.LLMObs.flush()
|
||||
|
||||
return body
|
Loading…
Reference in New Issue
Block a user