Working DataDog pipeline

This commit is contained in:
0xThresh.eth 2024-06-06 22:54:12 -07:00
parent 93cb893666
commit 30fa228a84
5 changed files with 199 additions and 2 deletions

View File

@ -1 +1,2 @@
.venv .venv
.env

3
.gitignore vendored
View File

@ -8,4 +8,5 @@ pipelines/*
!pipelines/.gitignore !pipelines/.gitignore
.DS_Store .DS_Store
.venv .venv
venv/

58
Dockerfile.rust Normal file
View File

@ -0,0 +1,58 @@
FROM python:3.11-slim-bookworm as base
# Use args
ARG USE_CUDA
ARG USE_CUDA_VER
## Basis ##
ENV ENV=prod \
PORT=9099 \
# pass build args to the build
USE_CUDA_DOCKER=${USE_CUDA} \
USE_CUDA_DOCKER_VER=${USE_CUDA_VER}
# Install GCC and build tools
RUN apt-get update && \
apt-get install -y gcc build-essential curl git && \
apt-get clean && \
rm -rf /var/lib/apt/lists/*
WORKDIR /app
# Install Python dependencies
COPY ./requirements.txt .
RUN pip3 install uv && \
if [ "$USE_CUDA" = "true" ]; then \
pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/$USE_CUDA_DOCKER_VER --no-cache-dir && \
uv pip install --system -r requirements.txt --no-cache-dir; \
else \
pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cpu --no-cache-dir && \
uv pip install --system -r requirements.txt --no-cache-dir; \
fi
# Copy the application code
COPY . .
# Install Rust compiler and ddtrace which are required for DataDog components
RUN curl --proto '=https' --tlsv1.2 -sSf https://sh.rustup.rs | sh -s -- -y
# Set up the Rust environment
ENV PATH="/root/.cargo/bin:${PATH}"
RUN /root/.cargo/bin/rustup default stable
# DEBUG - check that Rust installed correctly
RUN cargo --version
# Set the working directory to the Pipelines app dir
WORKDIR /app
# Install Python dependencies
RUN pip3 install git+https://github.com/DataDog/dd-trace-py.git@main
# Expose the port
ENV HOST="0.0.0.0"
ENV PORT="9099"
ENTRYPOINT [ "bash", "start.sh" ]

9
dev-docker.sh Executable file
View File

@ -0,0 +1,9 @@
# Removes any existing Open WebUI and Pipelines containers/ volumes - uncomment if you need a fresh start
# docker rm --force pipelines
# docker rm --force open-webui
# docker volume rm pipelines
# docker volume rm open-webui
# Runs the containers with Ollama image for Open WebUI and the Pipelines endpoint in place
docker run -d -p 9099:9099 --add-host=host.docker.internal:host-gateway -v pipelines:/app/pipelines --name pipelines --restart always --env-file .env ghcr.io/open-webui/pipelines:latest
docker run -d -p 3000:8080 -v ~/.ollama:/root/.ollama -v open-webui:/app/backend/data --name open-webui --restart always -e OPENAI_API_BASE_URL=http://host.docker.internal:9099 -e OPENAI_API_KEY=0p3n-w3bu! ghcr.io/open-webui/open-webui:ollama

View File

@ -0,0 +1,128 @@
"""
title: DataDog Filter Pipeline
author: 0xThresh
date: 2024-06-06
version: 1.0
license: MIT
description: A filter pipeline that sends traces to DataDog.
requirements: git+https://github.com/DataDog/dd-trace-py.git@main
environment_variables: DD_LLMOBS_AGENTLESS_ENABLED, DD_LLMOBS_ENABLED, DD_LLMOBS_APP_NAME, DD_API_KEY, DD_SITE
"""
from typing import List, Optional
import os
from utils.pipelines.main import get_last_user_message, get_last_assistant_message
from pydantic import BaseModel
from ddtrace.llmobs import LLMObs
class Pipeline:
class Valves(BaseModel):
# List target pipeline ids (models) that this filter will be connected to.
# If you want to connect this filter to all pipelines, you can set pipelines to ["*"]
# e.g. ["llama3:latest", "gpt-3.5-turbo"]
pipelines: List[str] = []
# Assign a priority level to the filter pipeline.
# The priority level determines the order in which the filter pipelines are executed.
# The lower the number, the higher the priority.
priority: int = 0
# Valves
dd_api_key: str
dd_site: str
ml_app: str
def __init__(self):
# Pipeline filters are only compatible with Open WebUI
# You can think of filter pipeline as a middleware that can be used to edit the form data before it is sent to the OpenAI API.
self.type = "filter"
# Optionally, you can set the id and name of the pipeline.
# Best practice is to not specify the id so that it can be automatically inferred from the filename, so that users can install multiple versions of the same pipeline.
# The identifier must be unique across all pipelines.
# The identifier must be an alphanumeric string that can include underscores or hyphens. It cannot contain spaces, special characters, slashes, or backslashes.
# self.id = "datadog_filter_pipeline"
self.name = "DataDog Filter"
# Initialize
self.valves = self.Valves(
**{
"pipelines": ["*"], # Connect to all pipelines
"dd_api_key": os.getenv("DD_API_KEY"),
"dd_site": os.getenv("DD_SITE", "datadoghq.com"),
"ml_app": os.getenv("ML_APP", "pipelines-test"),
}
)
# DataDog LLMOBS docs: https://docs.datadoghq.com/tracing/llm_observability/sdk/
self.LLMObs = LLMObs()
self.llm_span = None
self.chat_generations = {}
pass
async def on_startup(self):
# This function is called when the server is started.
print(f"on_startup:{__name__}")
self.set_dd()
pass
async def on_shutdown(self):
# This function is called when the server is stopped.
print(f"on_shutdown:{__name__}")
self.LLMObs.flush()
pass
async def on_valves_updated(self):
# This function is called when the valves are updated.
self.set_dd()
pass
def set_dd(self):
self.LLMObs.enable(
ml_app=self.valves.ml_app,
api_key=self.valves.dd_api_key,
site=self.valves.dd_site,
agentless_enabled=True,
integrations_enabled=True,
)
async def inlet(self, body: dict, user: Optional[dict] = None) -> dict:
print(f"inlet:{__name__}")
self.llm_span = self.LLMObs.llm(
model_name=body["model"],
name=f"filter:{__name__}",
model_provider="open-webui",
session_id=body["chat_id"],
ml_app=self.valves.ml_app
)
self.LLMObs.annotate(
span = self.llm_span,
input_data = get_last_user_message(body["messages"]),
)
print("SPAN: ")
print(self.llm_span)
return body
async def outlet(self, body: dict, user: Optional[dict] = None) -> dict:
print(f"outlet:{__name__}")
if body["chat_id"] not in self.chat_generations:
return body
print("SELF LLM SPAN")
print(self.llm_span)
#self.set_dd()
self.LLMObs.annotate(
span = self.llm_span,
output_data = get_last_assistant_message(body["messages"]),
)
self.llm_span.finish()
self.LLMObs.flush()
return body