mirror of
https://github.com/open-webui/pipelines
synced 2025-05-11 16:10:45 +00:00
feat: llm translation pipeline
This commit is contained in:
parent
53eee3de77
commit
17a44df0f3
157
examples/filters/llm_translate_filter_pipeline.py
Normal file
157
examples/filters/llm_translate_filter_pipeline.py
Normal file
@ -0,0 +1,157 @@
|
|||||||
|
from typing import List, Optional
|
||||||
|
from schemas import OpenAIChatMessage
|
||||||
|
from pydantic import BaseModel
|
||||||
|
import requests
|
||||||
|
import os
|
||||||
|
|
||||||
|
from utils.pipelines.main import get_last_user_message, get_last_assistant_message
|
||||||
|
|
||||||
|
|
||||||
|
class Pipeline:
|
||||||
|
class Valves(BaseModel):
|
||||||
|
# List target pipeline ids (models) that this filter will be connected to.
|
||||||
|
# If you want to connect this filter to all pipelines, you can set pipelines to ["*"]
|
||||||
|
# e.g. ["llama3:latest", "gpt-3.5-turbo"]
|
||||||
|
pipelines: List[str] = []
|
||||||
|
|
||||||
|
# Assign a priority level to the filter pipeline.
|
||||||
|
# The priority level determines the order in which the filter pipelines are executed.
|
||||||
|
# The lower the number, the higher the priority.
|
||||||
|
priority: int = 0
|
||||||
|
|
||||||
|
OPENAI_API_BASE_URL: str = "https://api.openai.com/v1"
|
||||||
|
OPENAI_API_KEY: str = ""
|
||||||
|
TASK_MODEL: str = "gpt-3.5-turbo"
|
||||||
|
|
||||||
|
# Source and target languages
|
||||||
|
# User message will be translated from source_user to target_user
|
||||||
|
source_user: Optional[str] = "auto"
|
||||||
|
target_user: Optional[str] = "en"
|
||||||
|
|
||||||
|
# Assistant languages
|
||||||
|
# Assistant message will be translated from source_assistant to target_assistant
|
||||||
|
source_assistant: Optional[str] = "en"
|
||||||
|
target_assistant: Optional[str] = "es"
|
||||||
|
|
||||||
|
def __init__(self):
|
||||||
|
# Pipeline filters are only compatible with Open WebUI
|
||||||
|
# You can think of filter pipeline as a middleware that can be used to edit the form data before it is sent to the OpenAI API.
|
||||||
|
self.type = "filter"
|
||||||
|
|
||||||
|
# Optionally, you can set the id and name of the pipeline.
|
||||||
|
# Best practice is to not specify the id so that it can be automatically inferred from the filename, so that users can install multiple versions of the same pipeline.
|
||||||
|
# The identifier must be unique across all pipelines.
|
||||||
|
# The identifier must be an alphanumeric string that can include underscores or hyphens. It cannot contain spaces, special characters, slashes, or backslashes.
|
||||||
|
# self.id = "libretranslate_filter_pipeline"
|
||||||
|
self.name = "LLM Translate Filter"
|
||||||
|
|
||||||
|
# Initialize
|
||||||
|
self.valves = self.Valves(
|
||||||
|
**{
|
||||||
|
"pipelines": ["*"], # Connect to all pipelines
|
||||||
|
"OPENAI_API_KEY": os.getenv(
|
||||||
|
"OPENAI_API_KEY", "your-openai-api-key-here"
|
||||||
|
),
|
||||||
|
}
|
||||||
|
)
|
||||||
|
|
||||||
|
pass
|
||||||
|
|
||||||
|
async def on_startup(self):
|
||||||
|
# This function is called when the server is started.
|
||||||
|
print(f"on_startup:{__name__}")
|
||||||
|
pass
|
||||||
|
|
||||||
|
async def on_shutdown(self):
|
||||||
|
# This function is called when the server is stopped.
|
||||||
|
print(f"on_shutdown:{__name__}")
|
||||||
|
pass
|
||||||
|
|
||||||
|
async def on_valves_updated(self):
|
||||||
|
# This function is called when the valves are updated.
|
||||||
|
pass
|
||||||
|
|
||||||
|
def translate(self, text: str, source: str, target: str) -> str:
|
||||||
|
headers = {}
|
||||||
|
headers["Authorization"] = f"Bearer {self.valves.OPENAI_API_KEY}"
|
||||||
|
headers["Content-Type"] = "application/json"
|
||||||
|
|
||||||
|
payload = {
|
||||||
|
"messages": [
|
||||||
|
{
|
||||||
|
"role": "system",
|
||||||
|
"content": f"Translate the following text to {target}. Provide only the translated text and nothing else.",
|
||||||
|
},
|
||||||
|
{"role": "user", "content": text},
|
||||||
|
],
|
||||||
|
"model": self.valves.TASK_MODEL,
|
||||||
|
}
|
||||||
|
print(payload)
|
||||||
|
|
||||||
|
try:
|
||||||
|
r = requests.post(
|
||||||
|
url=f"{self.valves.OPENAI_API_BASE_URL}/chat/completions",
|
||||||
|
json=payload,
|
||||||
|
headers=headers,
|
||||||
|
stream=False,
|
||||||
|
)
|
||||||
|
|
||||||
|
r.raise_for_status()
|
||||||
|
response = r.json()
|
||||||
|
print(response)
|
||||||
|
return response["choices"][0]["message"]["content"]
|
||||||
|
except Exception as e:
|
||||||
|
return f"Error: {e}"
|
||||||
|
|
||||||
|
async def inlet(self, body: dict, user: Optional[dict] = None) -> dict:
|
||||||
|
print(f"inlet:{__name__}")
|
||||||
|
|
||||||
|
messages = body["messages"]
|
||||||
|
user_message = get_last_user_message(messages)
|
||||||
|
|
||||||
|
print(f"User message: {user_message}")
|
||||||
|
|
||||||
|
# Translate user message
|
||||||
|
translated_user_message = self.translate(
|
||||||
|
user_message,
|
||||||
|
self.valves.source_user,
|
||||||
|
self.valves.target_user,
|
||||||
|
)
|
||||||
|
|
||||||
|
print(f"Translated user message: {translated_user_message}")
|
||||||
|
|
||||||
|
for message in reversed(messages):
|
||||||
|
if message["role"] == "user":
|
||||||
|
message["content"] = translated_user_message
|
||||||
|
break
|
||||||
|
|
||||||
|
body = {**body, "messages": messages}
|
||||||
|
return body
|
||||||
|
|
||||||
|
async def outlet(self, body: dict, user: Optional[dict] = None) -> dict:
|
||||||
|
if "title" in body:
|
||||||
|
return body
|
||||||
|
|
||||||
|
print(f"outlet:{__name__}")
|
||||||
|
|
||||||
|
messages = body["messages"]
|
||||||
|
assistant_message = get_last_assistant_message(messages)
|
||||||
|
|
||||||
|
print(f"Assistant message: {assistant_message}")
|
||||||
|
|
||||||
|
# Translate assistant message
|
||||||
|
translated_assistant_message = self.translate(
|
||||||
|
assistant_message,
|
||||||
|
self.valves.source_assistant,
|
||||||
|
self.valves.target_assistant,
|
||||||
|
)
|
||||||
|
|
||||||
|
print(f"Translated assistant message: {translated_assistant_message}")
|
||||||
|
|
||||||
|
for message in reversed(messages):
|
||||||
|
if message["role"] == "assistant":
|
||||||
|
message["content"] = translated_assistant_message
|
||||||
|
break
|
||||||
|
|
||||||
|
body = {**body, "messages": messages}
|
||||||
|
return body
|
Loading…
Reference in New Issue
Block a user