mirror of
https://github.com/open-webui/pipelines
synced 2025-05-10 15:40:55 +00:00
feat: llm translation pipeline
This commit is contained in:
parent
53eee3de77
commit
17a44df0f3
157
examples/filters/llm_translate_filter_pipeline.py
Normal file
157
examples/filters/llm_translate_filter_pipeline.py
Normal file
@ -0,0 +1,157 @@
|
||||
from typing import List, Optional
|
||||
from schemas import OpenAIChatMessage
|
||||
from pydantic import BaseModel
|
||||
import requests
|
||||
import os
|
||||
|
||||
from utils.pipelines.main import get_last_user_message, get_last_assistant_message
|
||||
|
||||
|
||||
class Pipeline:
|
||||
class Valves(BaseModel):
|
||||
# List target pipeline ids (models) that this filter will be connected to.
|
||||
# If you want to connect this filter to all pipelines, you can set pipelines to ["*"]
|
||||
# e.g. ["llama3:latest", "gpt-3.5-turbo"]
|
||||
pipelines: List[str] = []
|
||||
|
||||
# Assign a priority level to the filter pipeline.
|
||||
# The priority level determines the order in which the filter pipelines are executed.
|
||||
# The lower the number, the higher the priority.
|
||||
priority: int = 0
|
||||
|
||||
OPENAI_API_BASE_URL: str = "https://api.openai.com/v1"
|
||||
OPENAI_API_KEY: str = ""
|
||||
TASK_MODEL: str = "gpt-3.5-turbo"
|
||||
|
||||
# Source and target languages
|
||||
# User message will be translated from source_user to target_user
|
||||
source_user: Optional[str] = "auto"
|
||||
target_user: Optional[str] = "en"
|
||||
|
||||
# Assistant languages
|
||||
# Assistant message will be translated from source_assistant to target_assistant
|
||||
source_assistant: Optional[str] = "en"
|
||||
target_assistant: Optional[str] = "es"
|
||||
|
||||
def __init__(self):
|
||||
# Pipeline filters are only compatible with Open WebUI
|
||||
# You can think of filter pipeline as a middleware that can be used to edit the form data before it is sent to the OpenAI API.
|
||||
self.type = "filter"
|
||||
|
||||
# Optionally, you can set the id and name of the pipeline.
|
||||
# Best practice is to not specify the id so that it can be automatically inferred from the filename, so that users can install multiple versions of the same pipeline.
|
||||
# The identifier must be unique across all pipelines.
|
||||
# The identifier must be an alphanumeric string that can include underscores or hyphens. It cannot contain spaces, special characters, slashes, or backslashes.
|
||||
# self.id = "libretranslate_filter_pipeline"
|
||||
self.name = "LLM Translate Filter"
|
||||
|
||||
# Initialize
|
||||
self.valves = self.Valves(
|
||||
**{
|
||||
"pipelines": ["*"], # Connect to all pipelines
|
||||
"OPENAI_API_KEY": os.getenv(
|
||||
"OPENAI_API_KEY", "your-openai-api-key-here"
|
||||
),
|
||||
}
|
||||
)
|
||||
|
||||
pass
|
||||
|
||||
async def on_startup(self):
|
||||
# This function is called when the server is started.
|
||||
print(f"on_startup:{__name__}")
|
||||
pass
|
||||
|
||||
async def on_shutdown(self):
|
||||
# This function is called when the server is stopped.
|
||||
print(f"on_shutdown:{__name__}")
|
||||
pass
|
||||
|
||||
async def on_valves_updated(self):
|
||||
# This function is called when the valves are updated.
|
||||
pass
|
||||
|
||||
def translate(self, text: str, source: str, target: str) -> str:
|
||||
headers = {}
|
||||
headers["Authorization"] = f"Bearer {self.valves.OPENAI_API_KEY}"
|
||||
headers["Content-Type"] = "application/json"
|
||||
|
||||
payload = {
|
||||
"messages": [
|
||||
{
|
||||
"role": "system",
|
||||
"content": f"Translate the following text to {target}. Provide only the translated text and nothing else.",
|
||||
},
|
||||
{"role": "user", "content": text},
|
||||
],
|
||||
"model": self.valves.TASK_MODEL,
|
||||
}
|
||||
print(payload)
|
||||
|
||||
try:
|
||||
r = requests.post(
|
||||
url=f"{self.valves.OPENAI_API_BASE_URL}/chat/completions",
|
||||
json=payload,
|
||||
headers=headers,
|
||||
stream=False,
|
||||
)
|
||||
|
||||
r.raise_for_status()
|
||||
response = r.json()
|
||||
print(response)
|
||||
return response["choices"][0]["message"]["content"]
|
||||
except Exception as e:
|
||||
return f"Error: {e}"
|
||||
|
||||
async def inlet(self, body: dict, user: Optional[dict] = None) -> dict:
|
||||
print(f"inlet:{__name__}")
|
||||
|
||||
messages = body["messages"]
|
||||
user_message = get_last_user_message(messages)
|
||||
|
||||
print(f"User message: {user_message}")
|
||||
|
||||
# Translate user message
|
||||
translated_user_message = self.translate(
|
||||
user_message,
|
||||
self.valves.source_user,
|
||||
self.valves.target_user,
|
||||
)
|
||||
|
||||
print(f"Translated user message: {translated_user_message}")
|
||||
|
||||
for message in reversed(messages):
|
||||
if message["role"] == "user":
|
||||
message["content"] = translated_user_message
|
||||
break
|
||||
|
||||
body = {**body, "messages": messages}
|
||||
return body
|
||||
|
||||
async def outlet(self, body: dict, user: Optional[dict] = None) -> dict:
|
||||
if "title" in body:
|
||||
return body
|
||||
|
||||
print(f"outlet:{__name__}")
|
||||
|
||||
messages = body["messages"]
|
||||
assistant_message = get_last_assistant_message(messages)
|
||||
|
||||
print(f"Assistant message: {assistant_message}")
|
||||
|
||||
# Translate assistant message
|
||||
translated_assistant_message = self.translate(
|
||||
assistant_message,
|
||||
self.valves.source_assistant,
|
||||
self.valves.target_assistant,
|
||||
)
|
||||
|
||||
print(f"Translated assistant message: {translated_assistant_message}")
|
||||
|
||||
for message in reversed(messages):
|
||||
if message["role"] == "assistant":
|
||||
message["content"] = translated_assistant_message
|
||||
break
|
||||
|
||||
body = {**body, "messages": messages}
|
||||
return body
|
Loading…
Reference in New Issue
Block a user