feat: llm translation pipeline

This commit is contained in:
Timothy J. Baek 2024-06-05 13:10:37 -07:00
parent 53eee3de77
commit 17a44df0f3

View File

@ -0,0 +1,157 @@
from typing import List, Optional
from schemas import OpenAIChatMessage
from pydantic import BaseModel
import requests
import os
from utils.pipelines.main import get_last_user_message, get_last_assistant_message
class Pipeline:
class Valves(BaseModel):
# List target pipeline ids (models) that this filter will be connected to.
# If you want to connect this filter to all pipelines, you can set pipelines to ["*"]
# e.g. ["llama3:latest", "gpt-3.5-turbo"]
pipelines: List[str] = []
# Assign a priority level to the filter pipeline.
# The priority level determines the order in which the filter pipelines are executed.
# The lower the number, the higher the priority.
priority: int = 0
OPENAI_API_BASE_URL: str = "https://api.openai.com/v1"
OPENAI_API_KEY: str = ""
TASK_MODEL: str = "gpt-3.5-turbo"
# Source and target languages
# User message will be translated from source_user to target_user
source_user: Optional[str] = "auto"
target_user: Optional[str] = "en"
# Assistant languages
# Assistant message will be translated from source_assistant to target_assistant
source_assistant: Optional[str] = "en"
target_assistant: Optional[str] = "es"
def __init__(self):
# Pipeline filters are only compatible with Open WebUI
# You can think of filter pipeline as a middleware that can be used to edit the form data before it is sent to the OpenAI API.
self.type = "filter"
# Optionally, you can set the id and name of the pipeline.
# Best practice is to not specify the id so that it can be automatically inferred from the filename, so that users can install multiple versions of the same pipeline.
# The identifier must be unique across all pipelines.
# The identifier must be an alphanumeric string that can include underscores or hyphens. It cannot contain spaces, special characters, slashes, or backslashes.
# self.id = "libretranslate_filter_pipeline"
self.name = "LLM Translate Filter"
# Initialize
self.valves = self.Valves(
**{
"pipelines": ["*"], # Connect to all pipelines
"OPENAI_API_KEY": os.getenv(
"OPENAI_API_KEY", "your-openai-api-key-here"
),
}
)
pass
async def on_startup(self):
# This function is called when the server is started.
print(f"on_startup:{__name__}")
pass
async def on_shutdown(self):
# This function is called when the server is stopped.
print(f"on_shutdown:{__name__}")
pass
async def on_valves_updated(self):
# This function is called when the valves are updated.
pass
def translate(self, text: str, source: str, target: str) -> str:
headers = {}
headers["Authorization"] = f"Bearer {self.valves.OPENAI_API_KEY}"
headers["Content-Type"] = "application/json"
payload = {
"messages": [
{
"role": "system",
"content": f"Translate the following text to {target}. Provide only the translated text and nothing else.",
},
{"role": "user", "content": text},
],
"model": self.valves.TASK_MODEL,
}
print(payload)
try:
r = requests.post(
url=f"{self.valves.OPENAI_API_BASE_URL}/chat/completions",
json=payload,
headers=headers,
stream=False,
)
r.raise_for_status()
response = r.json()
print(response)
return response["choices"][0]["message"]["content"]
except Exception as e:
return f"Error: {e}"
async def inlet(self, body: dict, user: Optional[dict] = None) -> dict:
print(f"inlet:{__name__}")
messages = body["messages"]
user_message = get_last_user_message(messages)
print(f"User message: {user_message}")
# Translate user message
translated_user_message = self.translate(
user_message,
self.valves.source_user,
self.valves.target_user,
)
print(f"Translated user message: {translated_user_message}")
for message in reversed(messages):
if message["role"] == "user":
message["content"] = translated_user_message
break
body = {**body, "messages": messages}
return body
async def outlet(self, body: dict, user: Optional[dict] = None) -> dict:
if "title" in body:
return body
print(f"outlet:{__name__}")
messages = body["messages"]
assistant_message = get_last_assistant_message(messages)
print(f"Assistant message: {assistant_message}")
# Translate assistant message
translated_assistant_message = self.translate(
assistant_message,
self.valves.source_assistant,
self.valves.target_assistant,
)
print(f"Translated assistant message: {translated_assistant_message}")
for message in reversed(messages):
if message["role"] == "assistant":
message["content"] = translated_assistant_message
break
body = {**body, "messages": messages}
return body