add an additional blueprint to allow Ollama backend for function calling

This commit is contained in:
Josh Knapp 2025-03-11 13:42:25 -07:00
parent f89ab37f53
commit 0d02d2f1d7

View File

@ -0,0 +1,179 @@
from typing import List, Optional
from pydantic import BaseModel
import os
import requests
import json
from utils.pipelines.main import (
get_last_user_message,
add_or_update_system_message,
get_tools_specs,
)
# System prompt for function calling
DEFAULT_SYSTEM_PROMPT = (
"""Tools: {}
If a function tool doesn't match the query, return an empty string. Else, pick a
function tool, fill in the parameters from the function tool's schema, and
return it in the format {{ "name": \"functionName\", "parameters": {{ "key":
"value" }} }}. Only pick a function if the user asks. Only return the object. Do not return any other text."
"""
)
class Pipeline:
class Valves(BaseModel):
# List target pipeline ids (models) that this filter will be connected to.
# If you want to connect this filter to all pipelines, you can set pipelines to ["*"]
pipelines: List[str] = []
# Assign a priority level to the filter pipeline.
# The priority level determines the order in which the filter pipelines are executed.
# The lower the number, the higher the priority.
priority: int = 0
# Valves for function calling
OLLAMA_BASE_URL: str
TASK_MODEL: str
TEMPLATE: str
def __init__(self, prompt: str | None = None) -> None:
# Pipeline filters are only compatible with Open WebUI
# You can think of filter pipeline as a middleware that can be used to edit the form data before it is sent to the OpenAI API.
self.type = "filter"
# Optionally, you can set the id and name of the pipeline.
# Best practice is to not specify the id so that it can be automatically inferred from the filename, so that users can install multiple versions of the same pipeline.
# The identifier must be unique across all pipelines.
# The identifier must be an alphanumeric string that can include underscores or hyphens. It cannot contain spaces, special characters, slashes, or backslashes.
# self.id = "function_calling_blueprint"
self.name = "Function Calling Ollama Blueprint"
self.prompt = prompt or DEFAULT_SYSTEM_PROMPT
self.tools: object = None
# Initialize valves
self.valves = self.Valves(
**{
"pipelines": ["*"], # Connect to all pipelines
"OLLAMA_BASE_URL": os.getenv(
"OLLAMA_BASE_URL", "http://localhost:11434"
),
"TASK_MODEL": os.getenv("TASK_MODEL", "llama3.1:8b"),
"TEMPLATE": """Use the following context as your learned knowledge, inside <context></context> XML tags.
<context>
{{CONTEXT}}
</context>
When answer to user:
- If you don't know, just say that you don't know.
- If you don't know when you are not sure, ask for clarification.
Avoid mentioning that you obtained the information from the context.
And answer according to the language of the user's question.""",
}
)
async def on_startup(self):
# This function is called when the server is started.
print(f"on_startup:{__name__}")
pass
async def on_shutdown(self):
# This function is called when the server is stopped.
print(f"on_shutdown:{__name__}")
pass
async def inlet(self, body: dict, user: Optional[dict] = None) -> dict:
# If title generation is requested, skip the function calling filter
if body.get("title", False):
return body
print(f"pipe:{__name__}")
print(user)
# Get the last user message
user_message = get_last_user_message(body["messages"])
# Get the tools specs
tools_specs = get_tools_specs(self.tools)
prompt = self.prompt.format(json.dumps(tools_specs, indent=2))
content = "History:\n" + "\n".join(
[
f"{message['role']}: {message['content']}"
for message in body["messages"][::-1][:4]
]
) + f"Query: {user_message}"
result = self.run_completion(prompt, content)
messages = self.call_function(result, body["messages"])
# print(f"The return from from the tool is: {messages}")
return {**body, "messages": messages}
# Call the function
def call_function(self, result, messages: list[dict]) -> list[dict]:
if "name" not in result:
return messages
function = getattr(self.tools, result["name"])
function_result = None
try:
function_result = function(**result["parameters"])
except Exception as e:
print(e)
# Add the function result to the system prompt
if function_result:
system_prompt = self.valves.TEMPLATE.replace(
"{{CONTEXT}}", function_result
)
messages = add_or_update_system_message(
system_prompt, messages
)
# Return the updated messages
return messages
def run_completion(self, system_prompt: str, content: str) -> dict:
r = None
try:
r = requests.post(
url=f"{self.valves.OLLAMA_BASE_URL}/v1/chat/completions",
json={
"model": self.valves.TASK_MODEL,
"messages": [
{
"role": "system",
"content": system_prompt,
},
{
"role": "user",
"content": content,
},
],
# TODO: dynamically add response_format?
# "response_format": {"type": "json_object"},
},
stream=True,
)
r.raise_for_status()
response = r.json()
content = response["choices"][0]["message"]["content"]
# Parse the function response
if content != "":
result = json.loads(content)
print(result)
return result
except Exception as e:
print(f"Error: {e}")
if r:
try:
print(r.json())
except:
pass
return {}