mirror of
https://github.com/open-webui/pipelines
synced 2025-05-11 16:10:45 +00:00
Merge pull request #265 from hrmsk66/hrmsk66/support-google-vertexai
Google Vertex AI Example
This commit is contained in:
commit
0b99d06f23
@ -0,0 +1,170 @@
|
||||
"""
|
||||
title: Google GenAI (Vertex AI) Manifold Pipeline
|
||||
author: Hiromasa Kakehashi
|
||||
date: 2024-09-19
|
||||
version: 1.0
|
||||
license: MIT
|
||||
description: A pipeline for generating text using Google's GenAI models in Open-WebUI.
|
||||
requirements: vertexai
|
||||
environment_variables: GOOGLE_PROJECT_ID, GOOGLE_CLOUD_REGION
|
||||
usage_instructions:
|
||||
To use Gemini with the Vertex AI API, a service account with the appropriate role (e.g., `roles/aiplatform.user`) is required.
|
||||
- For deployment on Google Cloud: Associate the service account with the deployment.
|
||||
- For use outside of Google Cloud: Set the GOOGLE_APPLICATION_CREDENTIALS environment variable to the path of the service account key file.
|
||||
"""
|
||||
|
||||
import os
|
||||
from typing import Iterator, List, Union
|
||||
|
||||
import vertexai
|
||||
from pydantic import BaseModel, Field
|
||||
from vertexai.generative_models import (
|
||||
Content,
|
||||
GenerationConfig,
|
||||
GenerativeModel,
|
||||
HarmBlockThreshold,
|
||||
HarmCategory,
|
||||
Part,
|
||||
)
|
||||
|
||||
|
||||
class Pipeline:
|
||||
"""Google GenAI pipeline"""
|
||||
|
||||
class Valves(BaseModel):
|
||||
"""Options to change from the WebUI"""
|
||||
|
||||
GOOGLE_PROJECT_ID: str = ""
|
||||
GOOGLE_CLOUD_REGION: str = ""
|
||||
USE_PERMISSIVE_SAFETY: bool = Field(default=False)
|
||||
|
||||
def __init__(self):
|
||||
self.type = "manifold"
|
||||
self.name = "vertexai: "
|
||||
|
||||
self.valves = self.Valves(
|
||||
**{
|
||||
"GOOGLE_PROJECT_ID": os.getenv("GOOGLE_PROJECT_ID", ""),
|
||||
"GOOGLE_CLOUD_REGION": os.getenv("GOOGLE_CLOUD_REGION", ""),
|
||||
"USE_PERMISSIVE_SAFETY": False,
|
||||
}
|
||||
)
|
||||
self.pipelines = [
|
||||
{"id": "gemini-1.5-flash-001", "name": "Gemini 1.5 Flash"},
|
||||
{"id": "gemini-1.5-pro-001", "name": "Gemini 1.5 Pro"},
|
||||
{"id": "gemini-flash-experimental", "name": "Gemini 1.5 Flash Experimental"},
|
||||
{"id": "gemini-pro-experimental", "name": "Gemini 1.5 Pro Experimental"},
|
||||
]
|
||||
|
||||
async def on_startup(self) -> None:
|
||||
"""This function is called when the server is started."""
|
||||
|
||||
print(f"on_startup:{__name__}")
|
||||
vertexai.init(
|
||||
project=self.valves.GOOGLE_PROJECT_ID,
|
||||
location=self.valves.GOOGLE_CLOUD_REGION,
|
||||
)
|
||||
|
||||
async def on_shutdown(self) -> None:
|
||||
"""This function is called when the server is stopped."""
|
||||
print(f"on_shutdown:{__name__}")
|
||||
|
||||
async def on_valves_updated(self) -> None:
|
||||
"""This function is called when the valves are updated."""
|
||||
print(f"on_valves_updated:{__name__}")
|
||||
vertexai.init(
|
||||
project=self.valves.GOOGLE_PROJECT_ID,
|
||||
location=self.valves.GOOGLE_CLOUD_REGION,
|
||||
)
|
||||
|
||||
def pipe(
|
||||
self, user_message: str, model_id: str, messages: List[dict], body: dict
|
||||
) -> Union[str, Iterator]:
|
||||
try:
|
||||
if not model_id.startswith("gemini-"):
|
||||
return f"Error: Invalid model name format: {model_id}"
|
||||
|
||||
print(f"Pipe function called for model: {model_id}")
|
||||
print(f"Stream mode: {body.get('stream', False)}")
|
||||
|
||||
system_message = next(
|
||||
(msg["content"] for msg in messages if msg["role"] == "system"), None
|
||||
)
|
||||
|
||||
model = GenerativeModel(
|
||||
model_name=model_id,
|
||||
system_instruction=system_message,
|
||||
)
|
||||
|
||||
if body.get("title", False): # If chat title generation is requested
|
||||
contents = [Content(role="user", parts=[Part.from_text(user_message)])]
|
||||
else:
|
||||
contents = self.build_conversation_history(messages)
|
||||
|
||||
generation_config = GenerationConfig(
|
||||
temperature=body.get("temperature", 0.7),
|
||||
top_p=body.get("top_p", 0.9),
|
||||
top_k=body.get("top_k", 40),
|
||||
max_output_tokens=body.get("max_tokens", 8192),
|
||||
stop_sequences=body.get("stop", []),
|
||||
)
|
||||
|
||||
if self.valves.USE_PERMISSIVE_SAFETY:
|
||||
safety_settings = {
|
||||
HarmCategory.HARM_CATEGORY_HATE_SPEECH: HarmBlockThreshold.BLOCK_NONE,
|
||||
HarmCategory.HARM_CATEGORY_DANGEROUS_CONTENT: HarmBlockThreshold.BLOCK_NONE,
|
||||
HarmCategory.HARM_CATEGORY_SEXUALLY_EXPLICIT: HarmBlockThreshold.BLOCK_NONE,
|
||||
HarmCategory.HARM_CATEGORY_HARASSMENT: HarmBlockThreshold.BLOCK_NONE,
|
||||
}
|
||||
else:
|
||||
safety_settings = body.get("safety_settings")
|
||||
|
||||
response = model.generate_content(
|
||||
contents,
|
||||
stream=body.get("stream", False),
|
||||
generation_config=generation_config,
|
||||
safety_settings=safety_settings,
|
||||
)
|
||||
|
||||
if body.get("stream", False):
|
||||
return self.stream_response(response)
|
||||
else:
|
||||
return response.text
|
||||
|
||||
except Exception as e:
|
||||
print(f"Error generating content: {e}")
|
||||
return f"An error occurred: {str(e)}"
|
||||
|
||||
def stream_response(self, response):
|
||||
for chunk in response:
|
||||
if chunk.text:
|
||||
print(f"Chunk: {chunk.text}")
|
||||
yield chunk.text
|
||||
|
||||
def build_conversation_history(self, messages: List[dict]) -> List[Content]:
|
||||
contents = []
|
||||
|
||||
for message in messages:
|
||||
if message["role"] == "system":
|
||||
continue
|
||||
|
||||
parts = []
|
||||
|
||||
if isinstance(message.get("content"), list):
|
||||
for content in message["content"]:
|
||||
if content["type"] == "text":
|
||||
parts.append(Part.from_text(content["text"]))
|
||||
elif content["type"] == "image_url":
|
||||
image_url = content["image_url"]["url"]
|
||||
if image_url.startswith("data:image"):
|
||||
image_data = image_url.split(",")[1]
|
||||
parts.append(Part.from_image(image_data))
|
||||
else:
|
||||
parts.append(Part.from_uri(image_url))
|
||||
else:
|
||||
parts = [Part.from_text(message["content"])]
|
||||
|
||||
role = "user" if message["role"] == "user" else "model"
|
||||
contents.append(Content(role=role, parts=parts))
|
||||
|
||||
return contents
|
@ -17,6 +17,7 @@ httpx
|
||||
openai
|
||||
anthropic
|
||||
google-generativeai
|
||||
vertexai
|
||||
|
||||
# Database
|
||||
pymongo
|
||||
|
Loading…
Reference in New Issue
Block a user