open-webui/backend/open_webui/utils/embeddings.py

124 lines
4.3 KiB
Python

import random
import logging
import sys
from fastapi import Request
from open_webui.models.users import UserModel
from open_webui.models.models import Models
from open_webui.utils.models import check_model_access
from open_webui.env import SRC_LOG_LEVELS, GLOBAL_LOG_LEVEL, BYPASS_MODEL_ACCESS_CONTROL
from open_webui.routers.openai import embeddings as openai_embeddings
from open_webui.routers.ollama import embeddings as ollama_embeddings
from open_webui.routers.pipelines import process_pipeline_inlet_filter
from open_webui.utils.payload import convert_embedding_payload_openai_to_ollama
from open_webui.utils.response import convert_response_ollama_to_openai
logging.basicConfig(stream=sys.stdout, level=GLOBAL_LOG_LEVEL)
log = logging.getLogger(__name__)
log.setLevel(SRC_LOG_LEVELS["MAIN"])
async def generate_embeddings(
request: Request,
form_data: dict,
user: UserModel,
bypass_filter: bool = False,
):
"""
Dispatch and handle embeddings generation based on the model type (OpenAI, Ollama, Arena, pipeline, etc).
Args:
request (Request): The FastAPI request context.
form_data (dict): The input data sent to the endpoint.
user (UserModel): The authenticated user.
bypass_filter (bool): If True, disables access filtering (default False).
Returns:
dict: The embeddings response, following OpenAI API compatibility.
"""
if BYPASS_MODEL_ACCESS_CONTROL:
bypass_filter = True
# Attach extra metadata from request.state if present
if hasattr(request.state, "metadata"):
if "metadata" not in form_data:
form_data["metadata"] = request.state.metadata
else:
form_data["metadata"] = {
**form_data["metadata"],
**request.state.metadata,
}
# If "direct" flag present, use only that model
if getattr(request.state, "direct", False) and hasattr(request.state, "model"):
models = {
request.state.model["id"]: request.state.model,
}
else:
models = request.app.state.MODELS
model_id = form_data.get("model")
if model_id not in models:
raise Exception("Model not found")
model = models[model_id]
# Access filtering
if not getattr(request.state, "direct", False):
if not bypass_filter and user.role == "user":
check_model_access(user, model)
# Arena "meta-model": select a submodel at random
if model.get("owned_by") == "arena":
model_ids = model.get("info", {}).get("meta", {}).get("model_ids")
filter_mode = model.get("info", {}).get("meta", {}).get("filter_mode")
if model_ids and filter_mode == "exclude":
model_ids = [
m["id"]
for m in list(models.values())
if m.get("owned_by") != "arena" and m["id"] not in model_ids
]
if isinstance(model_ids, list) and model_ids:
selected_model_id = random.choice(model_ids)
else:
model_ids = [
m["id"]
for m in list(models.values())
if m.get("owned_by") != "arena"
]
selected_model_id = random.choice(model_ids)
inner_form = dict(form_data)
inner_form["model"] = selected_model_id
response = await generate_embeddings(
request, inner_form, user, bypass_filter=True
)
# Tag which concreted model was chosen
if isinstance(response, dict):
response = {
**response,
"selected_model_id": selected_model_id,
}
return response
# Pipeline/Function models
if model.get("pipe"):
# The pipeline handler should provide OpenAI-compatible schema
return await process_pipeline_inlet_filter(request, form_data, user, models)
# Ollama backend
if model.get("owned_by") == "ollama":
ollama_payload = convert_embedding_payload_openai_to_ollama(form_data)
response = await ollama_embeddings(
request=request,
form_data=ollama_payload,
user=user,
)
return convert_response_ollama_to_openai(response)
# Default: OpenAI or compatible backend
return await openai_embeddings(
request=request,
form_data=form_data,
user=user,
)