mirror of
https://github.com/open-webui/open-webui
synced 2025-06-16 19:31:52 +00:00
414 lines
17 KiB
Python
414 lines
17 KiB
Python
from pymilvus import MilvusClient as Client
|
|
from pymilvus import FieldSchema, DataType
|
|
import json
|
|
import logging
|
|
from typing import Optional
|
|
from open_webui.retrieval.vector.main import (
|
|
VectorDBBase,
|
|
VectorItem,
|
|
SearchResult,
|
|
GetResult,
|
|
)
|
|
from open_webui.config import (
|
|
MILVUS_URI,
|
|
MILVUS_DB,
|
|
MILVUS_TOKEN,
|
|
MILVUS_INDEX_TYPE,
|
|
MILVUS_METRIC_TYPE,
|
|
MILVUS_HNSW_M,
|
|
MILVUS_HNSW_EFCONSTRUCTION,
|
|
MILVUS_IVF_FLAT_NLIST,
|
|
)
|
|
from open_webui.env import SRC_LOG_LEVELS
|
|
|
|
log = logging.getLogger(__name__)
|
|
log.setLevel(SRC_LOG_LEVELS["RAG"])
|
|
|
|
|
|
class MilvusClient(VectorDBBase):
|
|
def __init__(self):
|
|
self.collection_prefix = "open_webui"
|
|
if MILVUS_TOKEN is None:
|
|
self.client = Client(uri=MILVUS_URI, db_name=MILVUS_DB)
|
|
else:
|
|
self.client = Client(uri=MILVUS_URI, db_name=MILVUS_DB, token=MILVUS_TOKEN)
|
|
|
|
def _result_to_get_result(self, result) -> GetResult:
|
|
ids = []
|
|
documents = []
|
|
metadatas = []
|
|
for match in result:
|
|
_ids = []
|
|
_documents = []
|
|
_metadatas = []
|
|
for item in match:
|
|
_ids.append(item.get("id"))
|
|
_documents.append(item.get("data", {}).get("text"))
|
|
_metadatas.append(item.get("metadata"))
|
|
ids.append(_ids)
|
|
documents.append(_documents)
|
|
metadatas.append(_metadatas)
|
|
return GetResult(
|
|
**{
|
|
"ids": ids,
|
|
"documents": documents,
|
|
"metadatas": metadatas,
|
|
}
|
|
)
|
|
|
|
def _result_to_search_result(self, result) -> SearchResult:
|
|
ids = []
|
|
distances = []
|
|
documents = []
|
|
metadatas = []
|
|
for match in result:
|
|
_ids = []
|
|
_distances = []
|
|
_documents = []
|
|
_metadatas = []
|
|
for item in match:
|
|
_ids.append(item.get("id"))
|
|
# normalize milvus score from [-1, 1] to [0, 1] range
|
|
# https://milvus.io/docs/de/metric.md
|
|
_dist = (item.get("distance") + 1.0) / 2.0
|
|
_distances.append(_dist)
|
|
_documents.append(item.get("entity", {}).get("data", {}).get("text"))
|
|
_metadatas.append(item.get("entity", {}).get("metadata"))
|
|
ids.append(_ids)
|
|
distances.append(_distances)
|
|
documents.append(_documents)
|
|
metadatas.append(_metadatas)
|
|
return SearchResult(
|
|
**{
|
|
"ids": ids,
|
|
"distances": distances,
|
|
"documents": documents,
|
|
"metadatas": metadatas,
|
|
}
|
|
)
|
|
|
|
def _create_collection(self, collection_name: str, dimension: int):
|
|
schema = self.client.create_schema(
|
|
auto_id=False,
|
|
enable_dynamic_field=True,
|
|
)
|
|
schema.add_field(
|
|
field_name="id",
|
|
datatype=DataType.VARCHAR,
|
|
is_primary=True,
|
|
max_length=65535,
|
|
)
|
|
schema.add_field(
|
|
field_name="vector",
|
|
datatype=DataType.FLOAT_VECTOR,
|
|
dim=dimension,
|
|
description="vector",
|
|
)
|
|
schema.add_field(field_name="data", datatype=DataType.JSON, description="data")
|
|
schema.add_field(
|
|
field_name="metadata", datatype=DataType.JSON, description="metadata"
|
|
)
|
|
|
|
index_params = self.client.prepare_index_params()
|
|
|
|
# Use configurations from config.py
|
|
index_type = MILVUS_INDEX_TYPE.upper()
|
|
metric_type = MILVUS_METRIC_TYPE.upper()
|
|
|
|
log.info(f"Using Milvus index type: {index_type}, metric type: {metric_type}")
|
|
|
|
index_creation_params = {}
|
|
if index_type == "HNSW":
|
|
index_creation_params = {
|
|
"M": MILVUS_HNSW_M,
|
|
"efConstruction": MILVUS_HNSW_EFCONSTRUCTION,
|
|
}
|
|
log.info(f"HNSW params: {index_creation_params}")
|
|
elif index_type == "IVF_FLAT":
|
|
index_creation_params = {"nlist": MILVUS_IVF_FLAT_NLIST}
|
|
log.info(f"IVF_FLAT params: {index_creation_params}")
|
|
elif index_type in ["FLAT", "AUTOINDEX"]:
|
|
log.info(f"Using {index_type} index with no specific build-time params.")
|
|
else:
|
|
log.warning(
|
|
f"Unsupported MILVUS_INDEX_TYPE: '{index_type}'. "
|
|
f"Supported types: HNSW, IVF_FLAT, FLAT, AUTOINDEX. "
|
|
f"Milvus will use its default for the collection if this type is not directly supported for index creation."
|
|
)
|
|
# For unsupported types, pass the type directly to Milvus; it might handle it or use a default.
|
|
# If Milvus errors out, the user needs to correct the MILVUS_INDEX_TYPE env var.
|
|
|
|
index_params.add_index(
|
|
field_name="vector",
|
|
index_type=index_type,
|
|
metric_type=metric_type,
|
|
params=index_creation_params,
|
|
)
|
|
|
|
self.client.create_collection(
|
|
collection_name=f"{self.collection_prefix}_{collection_name}",
|
|
schema=schema,
|
|
index_params=index_params,
|
|
)
|
|
log.info(
|
|
f"Successfully created collection '{self.collection_prefix}_{collection_name}' with index type '{index_type}' and metric '{metric_type}'."
|
|
)
|
|
|
|
def has_collection(self, collection_name: str) -> bool:
|
|
# Check if the collection exists based on the collection name.
|
|
collection_name = collection_name.replace("-", "_")
|
|
return self.client.has_collection(
|
|
collection_name=f"{self.collection_prefix}_{collection_name}"
|
|
)
|
|
|
|
def delete_collection(self, collection_name: str):
|
|
# Delete the collection based on the collection name.
|
|
collection_name = collection_name.replace("-", "_")
|
|
return self.client.drop_collection(
|
|
collection_name=f"{self.collection_prefix}_{collection_name}"
|
|
)
|
|
|
|
def search(
|
|
self, collection_name: str, vectors: list[list[float | int]], limit: int
|
|
) -> Optional[SearchResult]:
|
|
# Search for the nearest neighbor items based on the vectors and return 'limit' number of results.
|
|
collection_name = collection_name.replace("-", "_")
|
|
# For some index types like IVF_FLAT, search params like nprobe can be set.
|
|
# Example: search_params = {"nprobe": 10} if using IVF_FLAT
|
|
# For simplicity, not adding configurable search_params here, but could be extended.
|
|
result = self.client.search(
|
|
collection_name=f"{self.collection_prefix}_{collection_name}",
|
|
data=vectors,
|
|
limit=limit,
|
|
output_fields=["data", "metadata"],
|
|
# search_params=search_params # Potentially add later if needed
|
|
)
|
|
return self._result_to_search_result(result)
|
|
|
|
def query(self, collection_name: str, filter: dict, limit: Optional[int] = None):
|
|
# Construct the filter string for querying
|
|
collection_name = collection_name.replace("-", "_")
|
|
if not self.has_collection(collection_name):
|
|
log.warning(
|
|
f"Query attempted on non-existent collection: {self.collection_prefix}_{collection_name}"
|
|
)
|
|
return None
|
|
filter_string = " && ".join(
|
|
[
|
|
f'metadata["{key}"] == {json.dumps(value)}'
|
|
for key, value in filter.items()
|
|
]
|
|
)
|
|
max_limit = 16383 # The maximum number of records per request
|
|
all_results = []
|
|
if limit is None:
|
|
# Milvus default limit for query if not specified is 16384, but docs mention iteration.
|
|
# Let's set a practical high number if "all" is intended, or handle true pagination.
|
|
# For now, if limit is None, we'll fetch in batches up to a very large number.
|
|
# This part could be refined based on expected use cases for "get all".
|
|
# For this function signature, None implies "as many as possible" up to Milvus limits.
|
|
limit = (
|
|
16384 * 10
|
|
) # A large number to signify fetching many, will be capped by actual data or max_limit per call.
|
|
log.info(
|
|
f"Limit not specified for query, fetching up to {limit} results in batches."
|
|
)
|
|
|
|
# Initialize offset and remaining to handle pagination
|
|
offset = 0
|
|
remaining = limit
|
|
|
|
try:
|
|
log.info(
|
|
f"Querying collection {self.collection_prefix}_{collection_name} with filter: '{filter_string}', limit: {limit}"
|
|
)
|
|
# Loop until there are no more items to fetch or the desired limit is reached
|
|
while remaining > 0:
|
|
current_fetch = min(
|
|
max_limit, remaining if isinstance(remaining, int) else max_limit
|
|
)
|
|
log.debug(
|
|
f"Querying with offset: {offset}, current_fetch: {current_fetch}"
|
|
)
|
|
|
|
results = self.client.query(
|
|
collection_name=f"{self.collection_prefix}_{collection_name}",
|
|
filter=filter_string,
|
|
output_fields=[
|
|
"id",
|
|
"data",
|
|
"metadata",
|
|
], # Explicitly list needed fields. Vector not usually needed in query.
|
|
limit=current_fetch,
|
|
offset=offset,
|
|
)
|
|
|
|
if not results:
|
|
log.debug("No more results from query.")
|
|
break
|
|
|
|
all_results.extend(results)
|
|
results_count = len(results)
|
|
log.debug(f"Fetched {results_count} results in this batch.")
|
|
|
|
if isinstance(remaining, int):
|
|
remaining -= results_count
|
|
|
|
offset += results_count
|
|
|
|
# Break the loop if the results returned are less than the requested fetch count (means end of data)
|
|
if results_count < current_fetch:
|
|
log.debug(
|
|
"Fetched less than requested, assuming end of results for this query."
|
|
)
|
|
break
|
|
|
|
log.info(f"Total results from query: {len(all_results)}")
|
|
return self._result_to_get_result([all_results])
|
|
except Exception as e:
|
|
log.exception(
|
|
f"Error querying collection {self.collection_prefix}_{collection_name} with filter '{filter_string}' and limit {limit}: {e}"
|
|
)
|
|
return None
|
|
|
|
def get(self, collection_name: str) -> Optional[GetResult]:
|
|
# Get all the items in the collection. This can be very resource-intensive for large collections.
|
|
collection_name = collection_name.replace("-", "_")
|
|
log.warning(
|
|
f"Fetching ALL items from collection '{self.collection_prefix}_{collection_name}'. This might be slow for large collections."
|
|
)
|
|
# Using query with a trivial filter to get all items.
|
|
# This will use the paginated query logic.
|
|
return self.query(collection_name=collection_name, filter={}, limit=None)
|
|
|
|
def insert(self, collection_name: str, items: list[VectorItem]):
|
|
# Insert the items into the collection, if the collection does not exist, it will be created.
|
|
collection_name = collection_name.replace("-", "_")
|
|
if not self.client.has_collection(
|
|
collection_name=f"{self.collection_prefix}_{collection_name}"
|
|
):
|
|
log.info(
|
|
f"Collection {self.collection_prefix}_{collection_name} does not exist. Creating now."
|
|
)
|
|
if not items:
|
|
log.error(
|
|
f"Cannot create collection {self.collection_prefix}_{collection_name} without items to determine dimension."
|
|
)
|
|
raise ValueError(
|
|
"Cannot create Milvus collection without items to determine vector dimension."
|
|
)
|
|
self._create_collection(
|
|
collection_name=collection_name, dimension=len(items[0]["vector"])
|
|
)
|
|
|
|
log.info(
|
|
f"Inserting {len(items)} items into collection {self.collection_prefix}_{collection_name}."
|
|
)
|
|
return self.client.insert(
|
|
collection_name=f"{self.collection_prefix}_{collection_name}",
|
|
data=[
|
|
{
|
|
"id": item["id"],
|
|
"vector": item["vector"],
|
|
"data": {"text": item["text"]},
|
|
"metadata": item["metadata"],
|
|
}
|
|
for item in items
|
|
],
|
|
)
|
|
|
|
def upsert(self, collection_name: str, items: list[VectorItem]):
|
|
# Update the items in the collection, if the items are not present, insert them. If the collection does not exist, it will be created.
|
|
collection_name = collection_name.replace("-", "_")
|
|
if not self.client.has_collection(
|
|
collection_name=f"{self.collection_prefix}_{collection_name}"
|
|
):
|
|
log.info(
|
|
f"Collection {self.collection_prefix}_{collection_name} does not exist for upsert. Creating now."
|
|
)
|
|
if not items:
|
|
log.error(
|
|
f"Cannot create collection {self.collection_prefix}_{collection_name} for upsert without items to determine dimension."
|
|
)
|
|
raise ValueError(
|
|
"Cannot create Milvus collection for upsert without items to determine vector dimension."
|
|
)
|
|
self._create_collection(
|
|
collection_name=collection_name, dimension=len(items[0]["vector"])
|
|
)
|
|
|
|
log.info(
|
|
f"Upserting {len(items)} items into collection {self.collection_prefix}_{collection_name}."
|
|
)
|
|
return self.client.upsert(
|
|
collection_name=f"{self.collection_prefix}_{collection_name}",
|
|
data=[
|
|
{
|
|
"id": item["id"],
|
|
"vector": item["vector"],
|
|
"data": {"text": item["text"]},
|
|
"metadata": item["metadata"],
|
|
}
|
|
for item in items
|
|
],
|
|
)
|
|
|
|
def delete(
|
|
self,
|
|
collection_name: str,
|
|
ids: Optional[list[str]] = None,
|
|
filter: Optional[dict] = None,
|
|
):
|
|
# Delete the items from the collection based on the ids or filter.
|
|
collection_name = collection_name.replace("-", "_")
|
|
if not self.has_collection(collection_name):
|
|
log.warning(
|
|
f"Delete attempted on non-existent collection: {self.collection_prefix}_{collection_name}"
|
|
)
|
|
return None
|
|
|
|
if ids:
|
|
log.info(
|
|
f"Deleting items by IDs from {self.collection_prefix}_{collection_name}. IDs: {ids}"
|
|
)
|
|
return self.client.delete(
|
|
collection_name=f"{self.collection_prefix}_{collection_name}",
|
|
ids=ids,
|
|
)
|
|
elif filter:
|
|
filter_string = " && ".join(
|
|
[
|
|
f'metadata["{key}"] == {json.dumps(value)}'
|
|
for key, value in filter.items()
|
|
]
|
|
)
|
|
log.info(
|
|
f"Deleting items by filter from {self.collection_prefix}_{collection_name}. Filter: {filter_string}"
|
|
)
|
|
return self.client.delete(
|
|
collection_name=f"{self.collection_prefix}_{collection_name}",
|
|
filter=filter_string,
|
|
)
|
|
else:
|
|
log.warning(
|
|
f"Delete operation on {self.collection_prefix}_{collection_name} called without IDs or filter. No action taken."
|
|
)
|
|
return None
|
|
|
|
def reset(self):
|
|
# Resets the database. This will delete all collections and item entries that match the prefix.
|
|
log.warning(
|
|
f"Resetting Milvus: Deleting all collections with prefix '{self.collection_prefix}'."
|
|
)
|
|
collection_names = self.client.list_collections()
|
|
deleted_collections = []
|
|
for collection_name_full in collection_names:
|
|
if collection_name_full.startswith(self.collection_prefix):
|
|
try:
|
|
self.client.drop_collection(collection_name=collection_name_full)
|
|
deleted_collections.append(collection_name_full)
|
|
log.info(f"Deleted collection: {collection_name_full}")
|
|
except Exception as e:
|
|
log.error(f"Error deleting collection {collection_name_full}: {e}")
|
|
log.info(f"Milvus reset complete. Deleted collections: {deleted_collections}")
|