import json
import logging
import mimetypes
import os
import shutil
import asyncio
import re
from typing import List as TypingList
import uuid
from datetime import datetime
from pathlib import Path
from typing import Iterator, List, Optional, Sequence, Union
from fastapi import (
Depends,
FastAPI,
File,
Form,
HTTPException,
UploadFile,
Request,
status,
APIRouter,
)
from fastapi.middleware.cors import CORSMiddleware
from fastapi.concurrency import run_in_threadpool
from pydantic import BaseModel
import tiktoken
from langchain.text_splitter import RecursiveCharacterTextSplitter, TokenTextSplitter
from langchain_core.documents import Document
from open_webui.models.files import FileModel, Files
from open_webui.models.knowledge import Knowledges
from open_webui.storage.provider import Storage
from open_webui.retrieval.vector.factory import VECTOR_DB_CLIENT
# Document loaders
from open_webui.retrieval.loaders.main import Loader
from open_webui.retrieval.loaders.youtube import YoutubeLoader
# Web search engines
from open_webui.retrieval.web.main import SearchResult
from open_webui.retrieval.web.utils import get_web_loader
from open_webui.retrieval.web.brave import search_brave
from open_webui.retrieval.web.kagi import search_kagi
from open_webui.retrieval.web.mojeek import search_mojeek
from open_webui.retrieval.web.bocha import search_bocha
from open_webui.retrieval.web.duckduckgo import search_duckduckgo
from open_webui.retrieval.web.google_pse import search_google_pse
from open_webui.retrieval.web.jina_search import search_jina
from open_webui.retrieval.web.searchapi import search_searchapi
from open_webui.retrieval.web.serpapi import search_serpapi
from open_webui.retrieval.web.searxng import search_searxng
from open_webui.retrieval.web.yacy import search_yacy
from open_webui.retrieval.web.serper import search_serper
from open_webui.retrieval.web.serply import search_serply
from open_webui.retrieval.web.serpstack import search_serpstack
from open_webui.retrieval.web.tavily import search_tavily
from open_webui.retrieval.web.bing import search_bing
from open_webui.retrieval.web.exa import search_exa
from open_webui.retrieval.web.perplexity import search_perplexity
from open_webui.retrieval.web.sougou import search_sougou
from open_webui.retrieval.web.firecrawl import search_firecrawl
from open_webui.retrieval.web.external import search_external
from open_webui.retrieval.utils import (
get_embedding_function,
get_model_path,
query_collection,
query_collection_with_hybrid_search,
query_doc,
query_doc_with_hybrid_search,
)
from open_webui.utils.misc import (
calculate_sha256_string,
)
from open_webui.utils.auth import get_admin_user, get_verified_user
from open_webui.config import (
ENV,
RAG_EMBEDDING_MODEL_AUTO_UPDATE,
RAG_EMBEDDING_MODEL_TRUST_REMOTE_CODE,
RAG_RERANKING_MODEL_AUTO_UPDATE,
RAG_RERANKING_MODEL_TRUST_REMOTE_CODE,
UPLOAD_DIR,
DEFAULT_LOCALE,
RAG_EMBEDDING_CONTENT_PREFIX,
RAG_EMBEDDING_QUERY_PREFIX,
)
from open_webui.env import (
SRC_LOG_LEVELS,
DEVICE_TYPE,
DOCKER,
SENTENCE_TRANSFORMERS_BACKEND,
SENTENCE_TRANSFORMERS_MODEL_KWARGS,
SENTENCE_TRANSFORMERS_CROSS_ENCODER_BACKEND,
SENTENCE_TRANSFORMERS_CROSS_ENCODER_MODEL_KWARGS,
)
from open_webui.constants import ERROR_MESSAGES
log = logging.getLogger(__name__)
log.setLevel(SRC_LOG_LEVELS["RAG"])
##########################################
#
# Utility functions
#
##########################################
def get_ef(
engine: str,
embedding_model: str,
auto_update: bool = False,
):
ef = None
if embedding_model and engine == "":
from sentence_transformers import SentenceTransformer
try:
ef = SentenceTransformer(
get_model_path(embedding_model, auto_update),
device=DEVICE_TYPE,
trust_remote_code=RAG_EMBEDDING_MODEL_TRUST_REMOTE_CODE,
backend=SENTENCE_TRANSFORMERS_BACKEND,
model_kwargs=SENTENCE_TRANSFORMERS_MODEL_KWARGS,
)
except Exception as e:
log.debug(f"Error loading SentenceTransformer: {e}")
return ef
def get_rf(
engine: str = "",
reranking_model: Optional[str] = None,
external_reranker_url: str = "",
external_reranker_api_key: str = "",
auto_update: bool = False,
):
rf = None
if reranking_model:
if any(model in reranking_model for model in ["jinaai/jina-colbert-v2"]):
try:
from open_webui.retrieval.models.colbert import ColBERT
rf = ColBERT(
get_model_path(reranking_model, auto_update),
env="docker" if DOCKER else None,
)
except Exception as e:
log.error(f"ColBERT: {e}")
raise Exception(ERROR_MESSAGES.DEFAULT(e))
else:
if engine == "external":
try:
from open_webui.retrieval.models.external import ExternalReranker
rf = ExternalReranker(
url=external_reranker_url,
api_key=external_reranker_api_key,
model=reranking_model,
)
except Exception as e:
log.error(f"ExternalReranking: {e}")
raise Exception(ERROR_MESSAGES.DEFAULT(e))
else:
import sentence_transformers
try:
rf = sentence_transformers.CrossEncoder(
get_model_path(reranking_model, auto_update),
device=DEVICE_TYPE,
trust_remote_code=RAG_RERANKING_MODEL_TRUST_REMOTE_CODE,
backend=SENTENCE_TRANSFORMERS_CROSS_ENCODER_BACKEND,
model_kwargs=SENTENCE_TRANSFORMERS_CROSS_ENCODER_MODEL_KWARGS,
)
except Exception as e:
log.error(f"CrossEncoder: {e}")
raise Exception(ERROR_MESSAGES.DEFAULT("CrossEncoder error"))
return rf
##########################################
#
# Text cleaning and processing functions
#
##########################################
class TextCleaner:
"""Modular text cleaning system for document processing and embedding preparation."""
@staticmethod
def normalize_escape_sequences(text: str) -> str:
"""Normalize escape sequences from various document formats."""
if not text:
return ""
# Handle double-escaped sequences (common in PPTX)
replacements = [
('\\\\n', '\n'), # Double-escaped newlines
('\\\\t', ' '), # Double-escaped tabs
('\\\\"', '"'), # Double-escaped quotes
('\\\\r', ''), # Double-escaped carriage returns
('\\\\/', '/'), # Double-escaped slashes
('\\\\', '\\'), # Convert double backslashes to single
]
for old, new in replacements:
text = text.replace(old, new)
# Handle single-escaped sequences
single_replacements = [
('\\n', '\n'), # Single-escaped newlines
('\\t', ' '), # Single-escaped tabs
('\\"', '"'), # Single-escaped quotes
('\\\'', "'"), # Single-escaped single quotes
('\\r', ''), # Single-escaped carriage returns
('\\/', '/'), # Single-escaped slashes
]
for old, new in single_replacements:
text = text.replace(old, new)
# Remove any remaining backslash artifacts
text = re.sub(r'\\[a-zA-Z]', '', text) # Remove \letter patterns
text = re.sub(r'\\[0-9]', '', text) # Remove \number patterns
text = re.sub(r'\\[^a-zA-Z0-9\s]', '', text) # Remove \symbol patterns
text = re.sub(r'\\+', '', text) # Remove remaining backslashes
return text
@staticmethod
def normalize_unicode(text: str) -> str:
"""Convert special Unicode characters to ASCII equivalents."""
if not text:
return ""
unicode_map = {
'–': '-', # En dash
'—': '-', # Em dash
''': "'", # Smart single quote left
''': "'", # Smart single quote right
'"': '"', # Smart double quote left
'"': '"', # Smart double quote right
'…': '...', # Ellipsis
'™': ' TM', # Trademark
'®': ' R', # Registered
'©': ' C', # Copyright
'°': ' deg', # Degree symbol
}
for unicode_char, ascii_char in unicode_map.items():
text = text.replace(unicode_char, ascii_char)
return text
@staticmethod
def normalize_quotes(text: str) -> str:
"""Clean up quote-related artifacts and normalize quote marks."""
if not text:
return ""
# Remove quote artifacts
quote_patterns = [
(r'\\+"', '"'), # Multiple backslashes before quotes
(r'\\"', '"'), # Escaped double quotes
(r"\\'", "'"), # Escaped single quotes
(r'\\&', '&'), # Escaped ampersands
(r'""', '"'), # Double quotes
(r"''", "'"), # Double single quotes
]
for pattern, replacement in quote_patterns:
text = re.sub(pattern, replacement, text)
return text
@staticmethod
def normalize_whitespace(text: str, preserve_paragraphs: bool = True) -> str:
"""Normalize whitespace while optionally preserving paragraph structure."""
if not text:
return ""
if preserve_paragraphs:
# Preserve paragraph breaks (double newlines) but clean up excessive spacing
text = re.sub(r'[ \t]+', ' ', text) # Multiple spaces/tabs -> single space
text = re.sub(r'\n\s*\n\s*\n+', '\n\n', text) # Multiple empty lines -> double line break
text = re.sub(r'^\s+|\s+$', '', text, flags=re.MULTILINE) # Trim line-level whitespace
else:
# Flatten all whitespace for embedding
text = re.sub(r'\n+', ' ', text) # All newlines to spaces
text = re.sub(r'\s+', ' ', text) # All whitespace to single spaces
return text.strip()
@staticmethod
def remove_artifacts(text: str) -> str:
"""Remove document format artifacts and orphaned elements."""
if not text:
return ""
# Remove orphaned punctuation
text = re.sub(r'^\s*[)\]}]+\s*', '', text) # Orphaned closing brackets at start
text = re.sub(r'\n\s*[)\]}]+\s*\n', '\n\n', text) # Orphaned closing brackets on own lines
# Remove excessive punctuation
text = re.sub(r'[.]{3,}', '...', text) # Multiple dots to ellipsis
text = re.sub(r'[-]{3,}', '---', text) # Multiple dashes
# Remove empty parentheses and brackets
text = re.sub(r'\(\s*\)', '', text) # Empty parentheses
text = re.sub(r'\[\s*\]', '', text) # Empty square brackets
text = re.sub(r'\{\s*\}', '', text) # Empty curly brackets
return text
@classmethod
def clean_for_chunking(cls, text: str) -> str:
"""Clean text for semantic chunking - preserves structure but normalizes content."""
if not text:
return ""
# Apply all cleaning steps while preserving paragraph structure
text = cls.normalize_escape_sequences(text)
text = cls.normalize_unicode(text)
text = cls.normalize_quotes(text)
text = cls.remove_artifacts(text)
text = cls.normalize_whitespace(text, preserve_paragraphs=True)
return text
@classmethod
def clean_for_embedding(cls, text: str) -> str:
"""Clean text for embedding - flattens structure and optimizes for vector similarity."""
if not text:
return ""
# Start with chunking-level cleaning
text = cls.clean_for_chunking(text)
# Flatten for embedding
text = cls.normalize_whitespace(text, preserve_paragraphs=False)
return text
@classmethod
def clean_for_storage(cls, text: str) -> str:
"""Clean text for storage - most aggressive cleaning for database storage."""
if not text:
return ""
# Start with embedding-level cleaning
text = cls.clean_for_embedding(text)
# Additional aggressive cleaning for storage
text = re.sub(r'\\([^a-zA-Z0-9\s])', r'\1', text) # Remove any remaining escape sequences
return text
def clean_text_content(text: str) -> str:
"""Legacy function wrapper for backward compatibility."""
return TextCleaner.clean_for_chunking(text)
def create_semantic_chunks(text: str, max_chunk_size: int, overlap_size: int) -> TypingList[str]:
"""Create semantically aware chunks that respect document structure"""
if not text or len(text) <= max_chunk_size:
return [text] if text else []
chunks = []
# Split by double line breaks (paragraphs) first
paragraphs = text.split('\n\n')
current_chunk = ""
for paragraph in paragraphs:
paragraph = paragraph.strip()
if not paragraph:
continue
# If adding this paragraph would exceed chunk size
if current_chunk and len(current_chunk) + len(paragraph) + 2 > max_chunk_size:
# Try to split the current chunk at sentence boundaries if it's too long
if len(current_chunk) > max_chunk_size:
sentence_chunks = split_by_sentences(current_chunk, max_chunk_size, overlap_size)
chunks.extend(sentence_chunks)
else:
chunks.append(current_chunk.strip())
# Start new chunk with overlap from previous chunk if applicable
if chunks and overlap_size > 0:
prev_chunk = chunks[-1]
overlap_text = get_text_overlap(prev_chunk, overlap_size)
current_chunk = overlap_text + "\n\n" + paragraph if overlap_text else paragraph
else:
current_chunk = paragraph
else:
# Add paragraph to current chunk
if current_chunk:
current_chunk += "\n\n" + paragraph
else:
current_chunk = paragraph
# Add the last chunk
if current_chunk:
if len(current_chunk) > max_chunk_size:
sentence_chunks = split_by_sentences(current_chunk, max_chunk_size, overlap_size)
chunks.extend(sentence_chunks)
else:
chunks.append(current_chunk.strip())
return [chunk for chunk in chunks if chunk.strip()]
def split_by_sentences(text: str, max_chunk_size: int, overlap_size: int) -> TypingList[str]:
"""Split text by sentences when paragraph-level splitting isn't sufficient"""
# Split by sentence endings
sentences = re.split(r'(?<=[.!?])\s+', text)
chunks = []
current_chunk = ""
for sentence in sentences:
sentence = sentence.strip()
if not sentence:
continue
# If adding this sentence would exceed chunk size
if current_chunk and len(current_chunk) + len(sentence) + 1 > max_chunk_size:
chunks.append(current_chunk.strip())
# Start new chunk with overlap
if overlap_size > 0:
overlap_text = get_text_overlap(current_chunk, overlap_size)
current_chunk = overlap_text + " " + sentence if overlap_text else sentence
else:
current_chunk = sentence
else:
# Add sentence to current chunk
if current_chunk:
current_chunk += " " + sentence
else:
current_chunk = sentence
# Add the last chunk
if current_chunk:
chunks.append(current_chunk.strip())
return [chunk for chunk in chunks if chunk.strip()]
def get_text_overlap(text: str, overlap_size: int) -> str:
"""Get the last overlap_size characters from text, preferring word boundaries"""
if not text or overlap_size <= 0:
return ""
if len(text) <= overlap_size:
return text
# Try to find a good word boundary within the overlap region
overlap_text = text[-overlap_size:]
# Find the first space to avoid cutting words
space_index = overlap_text.find(' ')
if space_index > 0:
return overlap_text[space_index:].strip()
return overlap_text.strip()
##########################################
#
# API routes
#
##########################################
router = APIRouter()
class CollectionNameForm(BaseModel):
collection_name: Optional[str] = None
class ProcessUrlForm(CollectionNameForm):
url: str
class SearchForm(BaseModel):
queries: List[str]
@router.get("/")
async def get_status(request: Request):
return {
"status": True,
"chunk_size": request.app.state.config.CHUNK_SIZE,
"chunk_overlap": request.app.state.config.CHUNK_OVERLAP,
"template": request.app.state.config.RAG_TEMPLATE,
"embedding_engine": request.app.state.config.RAG_EMBEDDING_ENGINE,
"embedding_model": request.app.state.config.RAG_EMBEDDING_MODEL,
"reranking_model": request.app.state.config.RAG_RERANKING_MODEL,
"embedding_batch_size": request.app.state.config.RAG_EMBEDDING_BATCH_SIZE,
}
@router.get("/embedding")
async def get_embedding_config(request: Request, user=Depends(get_admin_user)):
return {
"status": True,
"embedding_engine": request.app.state.config.RAG_EMBEDDING_ENGINE,
"embedding_model": request.app.state.config.RAG_EMBEDDING_MODEL,
"embedding_batch_size": request.app.state.config.RAG_EMBEDDING_BATCH_SIZE,
"openai_config": {
"url": request.app.state.config.RAG_OPENAI_API_BASE_URL,
"key": request.app.state.config.RAG_OPENAI_API_KEY,
},
"ollama_config": {
"url": request.app.state.config.RAG_OLLAMA_BASE_URL,
"key": request.app.state.config.RAG_OLLAMA_API_KEY,
},
"azure_openai_config": {
"url": request.app.state.config.RAG_AZURE_OPENAI_BASE_URL,
"key": request.app.state.config.RAG_AZURE_OPENAI_API_KEY,
"version": request.app.state.config.RAG_AZURE_OPENAI_API_VERSION,
},
}
class OpenAIConfigForm(BaseModel):
url: str
key: str
class OllamaConfigForm(BaseModel):
url: str
key: str
class AzureOpenAIConfigForm(BaseModel):
url: str
key: str
version: str
class EmbeddingModelUpdateForm(BaseModel):
openai_config: Optional[OpenAIConfigForm] = None
ollama_config: Optional[OllamaConfigForm] = None
azure_openai_config: Optional[AzureOpenAIConfigForm] = None
embedding_engine: str
embedding_model: str
embedding_batch_size: Optional[int] = 1
@router.post("/embedding/update")
async def update_embedding_config(
request: Request, form_data: EmbeddingModelUpdateForm, user=Depends(get_admin_user)
):
log.info(
f"Updating embedding model: {request.app.state.config.RAG_EMBEDDING_MODEL} to {form_data.embedding_model}"
)
try:
request.app.state.config.RAG_EMBEDDING_ENGINE = form_data.embedding_engine
request.app.state.config.RAG_EMBEDDING_MODEL = form_data.embedding_model
if request.app.state.config.RAG_EMBEDDING_ENGINE in [
"ollama",
"openai",
"azure_openai",
]:
if form_data.openai_config is not None:
request.app.state.config.RAG_OPENAI_API_BASE_URL = (
form_data.openai_config.url
)
request.app.state.config.RAG_OPENAI_API_KEY = (
form_data.openai_config.key
)
if form_data.ollama_config is not None:
request.app.state.config.RAG_OLLAMA_BASE_URL = (
form_data.ollama_config.url
)
request.app.state.config.RAG_OLLAMA_API_KEY = (
form_data.ollama_config.key
)
if form_data.azure_openai_config is not None:
request.app.state.config.RAG_AZURE_OPENAI_BASE_URL = (
form_data.azure_openai_config.url
)
request.app.state.config.RAG_AZURE_OPENAI_API_KEY = (
form_data.azure_openai_config.key
)
request.app.state.config.RAG_AZURE_OPENAI_API_VERSION = (
form_data.azure_openai_config.version
)
request.app.state.config.RAG_EMBEDDING_BATCH_SIZE = (
form_data.embedding_batch_size
)
request.app.state.ef = get_ef(
request.app.state.config.RAG_EMBEDDING_ENGINE,
request.app.state.config.RAG_EMBEDDING_MODEL,
)
request.app.state.EMBEDDING_FUNCTION = get_embedding_function(
request.app.state.config.RAG_EMBEDDING_ENGINE,
request.app.state.config.RAG_EMBEDDING_MODEL,
request.app.state.ef,
(
request.app.state.config.RAG_OPENAI_API_BASE_URL
if request.app.state.config.RAG_EMBEDDING_ENGINE == "openai"
else (
request.app.state.config.RAG_OLLAMA_BASE_URL
if request.app.state.config.RAG_EMBEDDING_ENGINE == "ollama"
else request.app.state.config.RAG_AZURE_OPENAI_BASE_URL
)
),
(
request.app.state.config.RAG_OPENAI_API_KEY
if request.app.state.config.RAG_EMBEDDING_ENGINE == "openai"
else (
request.app.state.config.RAG_OLLAMA_API_KEY
if request.app.state.config.RAG_EMBEDDING_ENGINE == "ollama"
else request.app.state.config.RAG_AZURE_OPENAI_API_KEY
)
),
request.app.state.config.RAG_EMBEDDING_BATCH_SIZE,
azure_api_version=(
request.app.state.config.RAG_AZURE_OPENAI_API_VERSION
if request.app.state.config.RAG_EMBEDDING_ENGINE == "azure_openai"
else None
),
)
return {
"status": True,
"embedding_engine": request.app.state.config.RAG_EMBEDDING_ENGINE,
"embedding_model": request.app.state.config.RAG_EMBEDDING_MODEL,
"embedding_batch_size": request.app.state.config.RAG_EMBEDDING_BATCH_SIZE,
"openai_config": {
"url": request.app.state.config.RAG_OPENAI_API_BASE_URL,
"key": request.app.state.config.RAG_OPENAI_API_KEY,
},
"ollama_config": {
"url": request.app.state.config.RAG_OLLAMA_BASE_URL,
"key": request.app.state.config.RAG_OLLAMA_API_KEY,
},
"azure_openai_config": {
"url": request.app.state.config.RAG_AZURE_OPENAI_BASE_URL,
"key": request.app.state.config.RAG_AZURE_OPENAI_API_KEY,
"version": request.app.state.config.RAG_AZURE_OPENAI_API_VERSION,
},
}
except Exception as e:
log.exception(f"Problem updating embedding model: {e}")
raise HTTPException(
status_code=status.HTTP_500_INTERNAL_SERVER_ERROR,
detail=ERROR_MESSAGES.DEFAULT(e),
)
@router.get("/config")
async def get_rag_config(request: Request, user=Depends(get_admin_user)):
return {
"status": True,
# RAG settings
"RAG_TEMPLATE": request.app.state.config.RAG_TEMPLATE,
"TOP_K": request.app.state.config.TOP_K,
"BYPASS_EMBEDDING_AND_RETRIEVAL": request.app.state.config.BYPASS_EMBEDDING_AND_RETRIEVAL,
"RAG_FULL_CONTEXT": request.app.state.config.RAG_FULL_CONTEXT,
# Hybrid search settings
"ENABLE_RAG_HYBRID_SEARCH": request.app.state.config.ENABLE_RAG_HYBRID_SEARCH,
"TOP_K_RERANKER": request.app.state.config.TOP_K_RERANKER,
"RELEVANCE_THRESHOLD": request.app.state.config.RELEVANCE_THRESHOLD,
"HYBRID_BM25_WEIGHT": request.app.state.config.HYBRID_BM25_WEIGHT,
# Content extraction settings
"CONTENT_EXTRACTION_ENGINE": request.app.state.config.CONTENT_EXTRACTION_ENGINE,
"PDF_EXTRACT_IMAGES": request.app.state.config.PDF_EXTRACT_IMAGES,
"DATALAB_MARKER_API_KEY": request.app.state.config.DATALAB_MARKER_API_KEY,
"DATALAB_MARKER_LANGS": request.app.state.config.DATALAB_MARKER_LANGS,
"DATALAB_MARKER_SKIP_CACHE": request.app.state.config.DATALAB_MARKER_SKIP_CACHE,
"DATALAB_MARKER_FORCE_OCR": request.app.state.config.DATALAB_MARKER_FORCE_OCR,
"DATALAB_MARKER_PAGINATE": request.app.state.config.DATALAB_MARKER_PAGINATE,
"DATALAB_MARKER_STRIP_EXISTING_OCR": request.app.state.config.DATALAB_MARKER_STRIP_EXISTING_OCR,
"DATALAB_MARKER_DISABLE_IMAGE_EXTRACTION": request.app.state.config.DATALAB_MARKER_DISABLE_IMAGE_EXTRACTION,
"DATALAB_MARKER_USE_LLM": request.app.state.config.DATALAB_MARKER_USE_LLM,
"DATALAB_MARKER_OUTPUT_FORMAT": request.app.state.config.DATALAB_MARKER_OUTPUT_FORMAT,
"EXTERNAL_DOCUMENT_LOADER_URL": request.app.state.config.EXTERNAL_DOCUMENT_LOADER_URL,
"EXTERNAL_DOCUMENT_LOADER_API_KEY": request.app.state.config.EXTERNAL_DOCUMENT_LOADER_API_KEY,
"TIKA_SERVER_URL": request.app.state.config.TIKA_SERVER_URL,
"DOCLING_SERVER_URL": request.app.state.config.DOCLING_SERVER_URL,
"DOCLING_OCR_ENGINE": request.app.state.config.DOCLING_OCR_ENGINE,
"DOCLING_OCR_LANG": request.app.state.config.DOCLING_OCR_LANG,
"DOCLING_DO_PICTURE_DESCRIPTION": request.app.state.config.DOCLING_DO_PICTURE_DESCRIPTION,
"DOCUMENT_INTELLIGENCE_ENDPOINT": request.app.state.config.DOCUMENT_INTELLIGENCE_ENDPOINT,
"DOCUMENT_INTELLIGENCE_KEY": request.app.state.config.DOCUMENT_INTELLIGENCE_KEY,
"MISTRAL_OCR_API_KEY": request.app.state.config.MISTRAL_OCR_API_KEY,
# Reranking settings
"RAG_RERANKING_MODEL": request.app.state.config.RAG_RERANKING_MODEL,
"RAG_RERANKING_ENGINE": request.app.state.config.RAG_RERANKING_ENGINE,
"RAG_EXTERNAL_RERANKER_URL": request.app.state.config.RAG_EXTERNAL_RERANKER_URL,
"RAG_EXTERNAL_RERANKER_API_KEY": request.app.state.config.RAG_EXTERNAL_RERANKER_API_KEY,
# Chunking settings
"TEXT_SPLITTER": request.app.state.config.TEXT_SPLITTER,
"CHUNK_SIZE": request.app.state.config.CHUNK_SIZE,
"CHUNK_OVERLAP": request.app.state.config.CHUNK_OVERLAP,
# File upload settings
"FILE_MAX_SIZE": request.app.state.config.FILE_MAX_SIZE,
"FILE_MAX_COUNT": request.app.state.config.FILE_MAX_COUNT,
"ALLOWED_FILE_EXTENSIONS": request.app.state.config.ALLOWED_FILE_EXTENSIONS,
# Integration settings
"ENABLE_GOOGLE_DRIVE_INTEGRATION": request.app.state.config.ENABLE_GOOGLE_DRIVE_INTEGRATION,
"ENABLE_ONEDRIVE_INTEGRATION": request.app.state.config.ENABLE_ONEDRIVE_INTEGRATION,
# Web search settings
"web": {
"ENABLE_WEB_SEARCH": request.app.state.config.ENABLE_WEB_SEARCH,
"WEB_SEARCH_ENGINE": request.app.state.config.WEB_SEARCH_ENGINE,
"WEB_SEARCH_TRUST_ENV": request.app.state.config.WEB_SEARCH_TRUST_ENV,
"WEB_SEARCH_RESULT_COUNT": request.app.state.config.WEB_SEARCH_RESULT_COUNT,
"WEB_SEARCH_CONCURRENT_REQUESTS": request.app.state.config.WEB_SEARCH_CONCURRENT_REQUESTS,
"WEB_SEARCH_DOMAIN_FILTER_LIST": request.app.state.config.WEB_SEARCH_DOMAIN_FILTER_LIST,
"BYPASS_WEB_SEARCH_EMBEDDING_AND_RETRIEVAL": request.app.state.config.BYPASS_WEB_SEARCH_EMBEDDING_AND_RETRIEVAL,
"BYPASS_WEB_SEARCH_WEB_LOADER": request.app.state.config.BYPASS_WEB_SEARCH_WEB_LOADER,
"SEARXNG_QUERY_URL": request.app.state.config.SEARXNG_QUERY_URL,
"YACY_QUERY_URL": request.app.state.config.YACY_QUERY_URL,
"YACY_USERNAME": request.app.state.config.YACY_USERNAME,
"YACY_PASSWORD": request.app.state.config.YACY_PASSWORD,
"GOOGLE_PSE_API_KEY": request.app.state.config.GOOGLE_PSE_API_KEY,
"GOOGLE_PSE_ENGINE_ID": request.app.state.config.GOOGLE_PSE_ENGINE_ID,
"BRAVE_SEARCH_API_KEY": request.app.state.config.BRAVE_SEARCH_API_KEY,
"KAGI_SEARCH_API_KEY": request.app.state.config.KAGI_SEARCH_API_KEY,
"MOJEEK_SEARCH_API_KEY": request.app.state.config.MOJEEK_SEARCH_API_KEY,
"BOCHA_SEARCH_API_KEY": request.app.state.config.BOCHA_SEARCH_API_KEY,
"SERPSTACK_API_KEY": request.app.state.config.SERPSTACK_API_KEY,
"SERPSTACK_HTTPS": request.app.state.config.SERPSTACK_HTTPS,
"SERPER_API_KEY": request.app.state.config.SERPER_API_KEY,
"SERPLY_API_KEY": request.app.state.config.SERPLY_API_KEY,
"TAVILY_API_KEY": request.app.state.config.TAVILY_API_KEY,
"SEARCHAPI_API_KEY": request.app.state.config.SEARCHAPI_API_KEY,
"SEARCHAPI_ENGINE": request.app.state.config.SEARCHAPI_ENGINE,
"SERPAPI_API_KEY": request.app.state.config.SERPAPI_API_KEY,
"SERPAPI_ENGINE": request.app.state.config.SERPAPI_ENGINE,
"JINA_API_KEY": request.app.state.config.JINA_API_KEY,
"BING_SEARCH_V7_ENDPOINT": request.app.state.config.BING_SEARCH_V7_ENDPOINT,
"BING_SEARCH_V7_SUBSCRIPTION_KEY": request.app.state.config.BING_SEARCH_V7_SUBSCRIPTION_KEY,
"EXA_API_KEY": request.app.state.config.EXA_API_KEY,
"PERPLEXITY_API_KEY": request.app.state.config.PERPLEXITY_API_KEY,
"SOUGOU_API_SID": request.app.state.config.SOUGOU_API_SID,
"SOUGOU_API_SK": request.app.state.config.SOUGOU_API_SK,
"WEB_LOADER_ENGINE": request.app.state.config.WEB_LOADER_ENGINE,
"ENABLE_WEB_LOADER_SSL_VERIFICATION": request.app.state.config.ENABLE_WEB_LOADER_SSL_VERIFICATION,
"PLAYWRIGHT_WS_URL": request.app.state.config.PLAYWRIGHT_WS_URL,
"PLAYWRIGHT_TIMEOUT": request.app.state.config.PLAYWRIGHT_TIMEOUT,
"FIRECRAWL_API_KEY": request.app.state.config.FIRECRAWL_API_KEY,
"FIRECRAWL_API_BASE_URL": request.app.state.config.FIRECRAWL_API_BASE_URL,
"TAVILY_EXTRACT_DEPTH": request.app.state.config.TAVILY_EXTRACT_DEPTH,
"EXTERNAL_WEB_SEARCH_URL": request.app.state.config.EXTERNAL_WEB_SEARCH_URL,
"EXTERNAL_WEB_SEARCH_API_KEY": request.app.state.config.EXTERNAL_WEB_SEARCH_API_KEY,
"EXTERNAL_WEB_LOADER_URL": request.app.state.config.EXTERNAL_WEB_LOADER_URL,
"EXTERNAL_WEB_LOADER_API_KEY": request.app.state.config.EXTERNAL_WEB_LOADER_API_KEY,
"YOUTUBE_LOADER_LANGUAGE": request.app.state.config.YOUTUBE_LOADER_LANGUAGE,
"YOUTUBE_LOADER_PROXY_URL": request.app.state.config.YOUTUBE_LOADER_PROXY_URL,
"YOUTUBE_LOADER_TRANSLATION": request.app.state.YOUTUBE_LOADER_TRANSLATION,
},
}
class WebConfig(BaseModel):
ENABLE_WEB_SEARCH: Optional[bool] = None
WEB_SEARCH_ENGINE: Optional[str] = None
WEB_SEARCH_TRUST_ENV: Optional[bool] = None
WEB_SEARCH_RESULT_COUNT: Optional[int] = None
WEB_SEARCH_CONCURRENT_REQUESTS: Optional[int] = None
WEB_SEARCH_DOMAIN_FILTER_LIST: Optional[List[str]] = []
BYPASS_WEB_SEARCH_EMBEDDING_AND_RETRIEVAL: Optional[bool] = None
BYPASS_WEB_SEARCH_WEB_LOADER: Optional[bool] = None
SEARXNG_QUERY_URL: Optional[str] = None
YACY_QUERY_URL: Optional[str] = None
YACY_USERNAME: Optional[str] = None
YACY_PASSWORD: Optional[str] = None
GOOGLE_PSE_API_KEY: Optional[str] = None
GOOGLE_PSE_ENGINE_ID: Optional[str] = None
BRAVE_SEARCH_API_KEY: Optional[str] = None
KAGI_SEARCH_API_KEY: Optional[str] = None
MOJEEK_SEARCH_API_KEY: Optional[str] = None
BOCHA_SEARCH_API_KEY: Optional[str] = None
SERPSTACK_API_KEY: Optional[str] = None
SERPSTACK_HTTPS: Optional[bool] = None
SERPER_API_KEY: Optional[str] = None
SERPLY_API_KEY: Optional[str] = None
TAVILY_API_KEY: Optional[str] = None
SEARCHAPI_API_KEY: Optional[str] = None
SEARCHAPI_ENGINE: Optional[str] = None
SERPAPI_API_KEY: Optional[str] = None
SERPAPI_ENGINE: Optional[str] = None
JINA_API_KEY: Optional[str] = None
BING_SEARCH_V7_ENDPOINT: Optional[str] = None
BING_SEARCH_V7_SUBSCRIPTION_KEY: Optional[str] = None
EXA_API_KEY: Optional[str] = None
PERPLEXITY_API_KEY: Optional[str] = None
SOUGOU_API_SID: Optional[str] = None
SOUGOU_API_SK: Optional[str] = None
WEB_LOADER_ENGINE: Optional[str] = None
ENABLE_WEB_LOADER_SSL_VERIFICATION: Optional[bool] = None
PLAYWRIGHT_WS_URL: Optional[str] = None
PLAYWRIGHT_TIMEOUT: Optional[int] = None
FIRECRAWL_API_KEY: Optional[str] = None
FIRECRAWL_API_BASE_URL: Optional[str] = None
TAVILY_EXTRACT_DEPTH: Optional[str] = None
EXTERNAL_WEB_SEARCH_URL: Optional[str] = None
EXTERNAL_WEB_SEARCH_API_KEY: Optional[str] = None
EXTERNAL_WEB_LOADER_URL: Optional[str] = None
EXTERNAL_WEB_LOADER_API_KEY: Optional[str] = None
YOUTUBE_LOADER_LANGUAGE: Optional[List[str]] = None
YOUTUBE_LOADER_PROXY_URL: Optional[str] = None
YOUTUBE_LOADER_TRANSLATION: Optional[str] = None
class ConfigForm(BaseModel):
# RAG settings
RAG_TEMPLATE: Optional[str] = None
TOP_K: Optional[int] = None
BYPASS_EMBEDDING_AND_RETRIEVAL: Optional[bool] = None
RAG_FULL_CONTEXT: Optional[bool] = None
# Hybrid search settings
ENABLE_RAG_HYBRID_SEARCH: Optional[bool] = None
TOP_K_RERANKER: Optional[int] = None
RELEVANCE_THRESHOLD: Optional[float] = None
HYBRID_BM25_WEIGHT: Optional[float] = None
# Content extraction settings
CONTENT_EXTRACTION_ENGINE: Optional[str] = None
PDF_EXTRACT_IMAGES: Optional[bool] = None
DATALAB_MARKER_API_KEY: Optional[str] = None
DATALAB_MARKER_LANGS: Optional[str] = None
DATALAB_MARKER_SKIP_CACHE: Optional[bool] = None
DATALAB_MARKER_FORCE_OCR: Optional[bool] = None
DATALAB_MARKER_PAGINATE: Optional[bool] = None
DATALAB_MARKER_STRIP_EXISTING_OCR: Optional[bool] = None
DATALAB_MARKER_DISABLE_IMAGE_EXTRACTION: Optional[bool] = None
DATALAB_MARKER_USE_LLM: Optional[bool] = None
DATALAB_MARKER_OUTPUT_FORMAT: Optional[str] = None
EXTERNAL_DOCUMENT_LOADER_URL: Optional[str] = None
EXTERNAL_DOCUMENT_LOADER_API_KEY: Optional[str] = None
TIKA_SERVER_URL: Optional[str] = None
DOCLING_SERVER_URL: Optional[str] = None
DOCLING_OCR_ENGINE: Optional[str] = None
DOCLING_OCR_LANG: Optional[str] = None
DOCLING_DO_PICTURE_DESCRIPTION: Optional[bool] = None
DOCUMENT_INTELLIGENCE_ENDPOINT: Optional[str] = None
DOCUMENT_INTELLIGENCE_KEY: Optional[str] = None
MISTRAL_OCR_API_KEY: Optional[str] = None
# Reranking settings
RAG_RERANKING_MODEL: Optional[str] = None
RAG_RERANKING_ENGINE: Optional[str] = None
RAG_EXTERNAL_RERANKER_URL: Optional[str] = None
RAG_EXTERNAL_RERANKER_API_KEY: Optional[str] = None
# Chunking settings
TEXT_SPLITTER: Optional[str] = None
CHUNK_SIZE: Optional[int] = None
CHUNK_OVERLAP: Optional[int] = None
# File upload settings
FILE_MAX_SIZE: Optional[int] = None
FILE_MAX_COUNT: Optional[int] = None
ALLOWED_FILE_EXTENSIONS: Optional[List[str]] = None
# Integration settings
ENABLE_GOOGLE_DRIVE_INTEGRATION: Optional[bool] = None
ENABLE_ONEDRIVE_INTEGRATION: Optional[bool] = None
# Web search settings
web: Optional[WebConfig] = None
@router.post("/config/update")
async def update_rag_config(
request: Request, form_data: ConfigForm, user=Depends(get_admin_user)
):
# RAG settings
request.app.state.config.RAG_TEMPLATE = (
form_data.RAG_TEMPLATE
if form_data.RAG_TEMPLATE is not None
else request.app.state.config.RAG_TEMPLATE
)
request.app.state.config.TOP_K = (
form_data.TOP_K
if form_data.TOP_K is not None
else request.app.state.config.TOP_K
)
request.app.state.config.BYPASS_EMBEDDING_AND_RETRIEVAL = (
form_data.BYPASS_EMBEDDING_AND_RETRIEVAL
if form_data.BYPASS_EMBEDDING_AND_RETRIEVAL is not None
else request.app.state.config.BYPASS_EMBEDDING_AND_RETRIEVAL
)
request.app.state.config.RAG_FULL_CONTEXT = (
form_data.RAG_FULL_CONTEXT
if form_data.RAG_FULL_CONTEXT is not None
else request.app.state.config.RAG_FULL_CONTEXT
)
# Hybrid search settings
request.app.state.config.ENABLE_RAG_HYBRID_SEARCH = (
form_data.ENABLE_RAG_HYBRID_SEARCH
if form_data.ENABLE_RAG_HYBRID_SEARCH is not None
else request.app.state.config.ENABLE_RAG_HYBRID_SEARCH
)
# Free up memory if hybrid search is disabled
if not request.app.state.config.ENABLE_RAG_HYBRID_SEARCH:
request.app.state.rf = None
request.app.state.config.TOP_K_RERANKER = (
form_data.TOP_K_RERANKER
if form_data.TOP_K_RERANKER is not None
else request.app.state.config.TOP_K_RERANKER
)
request.app.state.config.RELEVANCE_THRESHOLD = (
form_data.RELEVANCE_THRESHOLD
if form_data.RELEVANCE_THRESHOLD is not None
else request.app.state.config.RELEVANCE_THRESHOLD
)
request.app.state.config.HYBRID_BM25_WEIGHT = (
form_data.HYBRID_BM25_WEIGHT
if form_data.HYBRID_BM25_WEIGHT is not None
else request.app.state.config.HYBRID_BM25_WEIGHT
)
# Content extraction settings
request.app.state.config.CONTENT_EXTRACTION_ENGINE = (
form_data.CONTENT_EXTRACTION_ENGINE
if form_data.CONTENT_EXTRACTION_ENGINE is not None
else request.app.state.config.CONTENT_EXTRACTION_ENGINE
)
request.app.state.config.PDF_EXTRACT_IMAGES = (
form_data.PDF_EXTRACT_IMAGES
if form_data.PDF_EXTRACT_IMAGES is not None
else request.app.state.config.PDF_EXTRACT_IMAGES
)
request.app.state.config.DATALAB_MARKER_API_KEY = (
form_data.DATALAB_MARKER_API_KEY
if form_data.DATALAB_MARKER_API_KEY is not None
else request.app.state.config.DATALAB_MARKER_API_KEY
)
request.app.state.config.DATALAB_MARKER_LANGS = (
form_data.DATALAB_MARKER_LANGS
if form_data.DATALAB_MARKER_LANGS is not None
else request.app.state.config.DATALAB_MARKER_LANGS
)
request.app.state.config.DATALAB_MARKER_SKIP_CACHE = (
form_data.DATALAB_MARKER_SKIP_CACHE
if form_data.DATALAB_MARKER_SKIP_CACHE is not None
else request.app.state.config.DATALAB_MARKER_SKIP_CACHE
)
request.app.state.config.DATALAB_MARKER_FORCE_OCR = (
form_data.DATALAB_MARKER_FORCE_OCR
if form_data.DATALAB_MARKER_FORCE_OCR is not None
else request.app.state.config.DATALAB_MARKER_FORCE_OCR
)
request.app.state.config.DATALAB_MARKER_PAGINATE = (
form_data.DATALAB_MARKER_PAGINATE
if form_data.DATALAB_MARKER_PAGINATE is not None
else request.app.state.config.DATALAB_MARKER_PAGINATE
)
request.app.state.config.DATALAB_MARKER_STRIP_EXISTING_OCR = (
form_data.DATALAB_MARKER_STRIP_EXISTING_OCR
if form_data.DATALAB_MARKER_STRIP_EXISTING_OCR is not None
else request.app.state.config.DATALAB_MARKER_STRIP_EXISTING_OCR
)
request.app.state.config.DATALAB_MARKER_DISABLE_IMAGE_EXTRACTION = (
form_data.DATALAB_MARKER_DISABLE_IMAGE_EXTRACTION
if form_data.DATALAB_MARKER_DISABLE_IMAGE_EXTRACTION is not None
else request.app.state.config.DATALAB_MARKER_DISABLE_IMAGE_EXTRACTION
)
request.app.state.config.DATALAB_MARKER_OUTPUT_FORMAT = (
form_data.DATALAB_MARKER_OUTPUT_FORMAT
if form_data.DATALAB_MARKER_OUTPUT_FORMAT is not None
else request.app.state.config.DATALAB_MARKER_OUTPUT_FORMAT
)
request.app.state.config.DATALAB_MARKER_USE_LLM = (
form_data.DATALAB_MARKER_USE_LLM
if form_data.DATALAB_MARKER_USE_LLM is not None
else request.app.state.config.DATALAB_MARKER_USE_LLM
)
request.app.state.config.EXTERNAL_DOCUMENT_LOADER_URL = (
form_data.EXTERNAL_DOCUMENT_LOADER_URL
if form_data.EXTERNAL_DOCUMENT_LOADER_URL is not None
else request.app.state.config.EXTERNAL_DOCUMENT_LOADER_URL
)
request.app.state.config.EXTERNAL_DOCUMENT_LOADER_API_KEY = (
form_data.EXTERNAL_DOCUMENT_LOADER_API_KEY
if form_data.EXTERNAL_DOCUMENT_LOADER_API_KEY is not None
else request.app.state.config.EXTERNAL_DOCUMENT_LOADER_API_KEY
)
request.app.state.config.TIKA_SERVER_URL = (
form_data.TIKA_SERVER_URL
if form_data.TIKA_SERVER_URL is not None
else request.app.state.config.TIKA_SERVER_URL
)
request.app.state.config.DOCLING_SERVER_URL = (
form_data.DOCLING_SERVER_URL
if form_data.DOCLING_SERVER_URL is not None
else request.app.state.config.DOCLING_SERVER_URL
)
request.app.state.config.DOCLING_OCR_ENGINE = (
form_data.DOCLING_OCR_ENGINE
if form_data.DOCLING_OCR_ENGINE is not None
else request.app.state.config.DOCLING_OCR_ENGINE
)
request.app.state.config.DOCLING_OCR_LANG = (
form_data.DOCLING_OCR_LANG
if form_data.DOCLING_OCR_LANG is not None
else request.app.state.config.DOCLING_OCR_LANG
)
request.app.state.config.DOCLING_DO_PICTURE_DESCRIPTION = (
form_data.DOCLING_DO_PICTURE_DESCRIPTION
if form_data.DOCLING_DO_PICTURE_DESCRIPTION is not None
else request.app.state.config.DOCLING_DO_PICTURE_DESCRIPTION
)
request.app.state.config.DOCUMENT_INTELLIGENCE_ENDPOINT = (
form_data.DOCUMENT_INTELLIGENCE_ENDPOINT
if form_data.DOCUMENT_INTELLIGENCE_ENDPOINT is not None
else request.app.state.config.DOCUMENT_INTELLIGENCE_ENDPOINT
)
request.app.state.config.DOCUMENT_INTELLIGENCE_KEY = (
form_data.DOCUMENT_INTELLIGENCE_KEY
if form_data.DOCUMENT_INTELLIGENCE_KEY is not None
else request.app.state.config.DOCUMENT_INTELLIGENCE_KEY
)
request.app.state.config.MISTRAL_OCR_API_KEY = (
form_data.MISTRAL_OCR_API_KEY
if form_data.MISTRAL_OCR_API_KEY is not None
else request.app.state.config.MISTRAL_OCR_API_KEY
)
# Reranking settings
request.app.state.config.RAG_RERANKING_ENGINE = (
form_data.RAG_RERANKING_ENGINE
if form_data.RAG_RERANKING_ENGINE is not None
else request.app.state.config.RAG_RERANKING_ENGINE
)
request.app.state.config.RAG_EXTERNAL_RERANKER_URL = (
form_data.RAG_EXTERNAL_RERANKER_URL
if form_data.RAG_EXTERNAL_RERANKER_URL is not None
else request.app.state.config.RAG_EXTERNAL_RERANKER_URL
)
request.app.state.config.RAG_EXTERNAL_RERANKER_API_KEY = (
form_data.RAG_EXTERNAL_RERANKER_API_KEY
if form_data.RAG_EXTERNAL_RERANKER_API_KEY is not None
else request.app.state.config.RAG_EXTERNAL_RERANKER_API_KEY
)
log.info(
f"Updating reranking model: {request.app.state.config.RAG_RERANKING_MODEL} to {form_data.RAG_RERANKING_MODEL}"
)
try:
request.app.state.config.RAG_RERANKING_MODEL = form_data.RAG_RERANKING_MODEL
try:
request.app.state.rf = get_rf(
request.app.state.config.RAG_RERANKING_ENGINE,
request.app.state.config.RAG_RERANKING_MODEL,
request.app.state.config.RAG_EXTERNAL_RERANKER_URL,
request.app.state.config.RAG_EXTERNAL_RERANKER_API_KEY,
True,
)
except Exception as e:
log.error(f"Error loading reranking model: {e}")
request.app.state.config.ENABLE_RAG_HYBRID_SEARCH = False
except Exception as e:
log.exception(f"Problem updating reranking model: {e}")
raise HTTPException(
status_code=status.HTTP_500_INTERNAL_SERVER_ERROR,
detail=ERROR_MESSAGES.DEFAULT(e),
)
# Chunking settings
request.app.state.config.TEXT_SPLITTER = (
form_data.TEXT_SPLITTER
if form_data.TEXT_SPLITTER is not None
else request.app.state.config.TEXT_SPLITTER
)
request.app.state.config.CHUNK_SIZE = (
form_data.CHUNK_SIZE
if form_data.CHUNK_SIZE is not None
else request.app.state.config.CHUNK_SIZE
)
request.app.state.config.CHUNK_OVERLAP = (
form_data.CHUNK_OVERLAP
if form_data.CHUNK_OVERLAP is not None
else request.app.state.config.CHUNK_OVERLAP
)
# File upload settings
request.app.state.config.FILE_MAX_SIZE = (
form_data.FILE_MAX_SIZE
if form_data.FILE_MAX_SIZE is not None
else request.app.state.config.FILE_MAX_SIZE
)
request.app.state.config.FILE_MAX_COUNT = (
form_data.FILE_MAX_COUNT
if form_data.FILE_MAX_COUNT is not None
else request.app.state.config.FILE_MAX_COUNT
)
request.app.state.config.ALLOWED_FILE_EXTENSIONS = (
form_data.ALLOWED_FILE_EXTENSIONS
if form_data.ALLOWED_FILE_EXTENSIONS is not None
else request.app.state.config.ALLOWED_FILE_EXTENSIONS
)
# Integration settings
request.app.state.config.ENABLE_GOOGLE_DRIVE_INTEGRATION = (
form_data.ENABLE_GOOGLE_DRIVE_INTEGRATION
if form_data.ENABLE_GOOGLE_DRIVE_INTEGRATION is not None
else request.app.state.config.ENABLE_GOOGLE_DRIVE_INTEGRATION
)
request.app.state.config.ENABLE_ONEDRIVE_INTEGRATION = (
form_data.ENABLE_ONEDRIVE_INTEGRATION
if form_data.ENABLE_ONEDRIVE_INTEGRATION is not None
else request.app.state.config.ENABLE_ONEDRIVE_INTEGRATION
)
if form_data.web is not None:
# Web search settings
request.app.state.config.ENABLE_WEB_SEARCH = form_data.web.ENABLE_WEB_SEARCH
request.app.state.config.WEB_SEARCH_ENGINE = form_data.web.WEB_SEARCH_ENGINE
request.app.state.config.WEB_SEARCH_TRUST_ENV = (
form_data.web.WEB_SEARCH_TRUST_ENV
)
request.app.state.config.WEB_SEARCH_RESULT_COUNT = (
form_data.web.WEB_SEARCH_RESULT_COUNT
)
request.app.state.config.WEB_SEARCH_CONCURRENT_REQUESTS = (
form_data.web.WEB_SEARCH_CONCURRENT_REQUESTS
)
request.app.state.config.WEB_SEARCH_DOMAIN_FILTER_LIST = (
form_data.web.WEB_SEARCH_DOMAIN_FILTER_LIST
)
request.app.state.config.BYPASS_WEB_SEARCH_EMBEDDING_AND_RETRIEVAL = (
form_data.web.BYPASS_WEB_SEARCH_EMBEDDING_AND_RETRIEVAL
)
request.app.state.config.BYPASS_WEB_SEARCH_WEB_LOADER = (
form_data.web.BYPASS_WEB_SEARCH_WEB_LOADER
)
request.app.state.config.SEARXNG_QUERY_URL = form_data.web.SEARXNG_QUERY_URL
request.app.state.config.YACY_QUERY_URL = form_data.web.YACY_QUERY_URL
request.app.state.config.YACY_USERNAME = form_data.web.YACY_USERNAME
request.app.state.config.YACY_PASSWORD = form_data.web.YACY_PASSWORD
request.app.state.config.GOOGLE_PSE_API_KEY = form_data.web.GOOGLE_PSE_API_KEY
request.app.state.config.GOOGLE_PSE_ENGINE_ID = (
form_data.web.GOOGLE_PSE_ENGINE_ID
)
request.app.state.config.BRAVE_SEARCH_API_KEY = (
form_data.web.BRAVE_SEARCH_API_KEY
)
request.app.state.config.KAGI_SEARCH_API_KEY = form_data.web.KAGI_SEARCH_API_KEY
request.app.state.config.MOJEEK_SEARCH_API_KEY = (
form_data.web.MOJEEK_SEARCH_API_KEY
)
request.app.state.config.BOCHA_SEARCH_API_KEY = (
form_data.web.BOCHA_SEARCH_API_KEY
)
request.app.state.config.SERPSTACK_API_KEY = form_data.web.SERPSTACK_API_KEY
request.app.state.config.SERPSTACK_HTTPS = form_data.web.SERPSTACK_HTTPS
request.app.state.config.SERPER_API_KEY = form_data.web.SERPER_API_KEY
request.app.state.config.SERPLY_API_KEY = form_data.web.SERPLY_API_KEY
request.app.state.config.TAVILY_API_KEY = form_data.web.TAVILY_API_KEY
request.app.state.config.SEARCHAPI_API_KEY = form_data.web.SEARCHAPI_API_KEY
request.app.state.config.SEARCHAPI_ENGINE = form_data.web.SEARCHAPI_ENGINE
request.app.state.config.SERPAPI_API_KEY = form_data.web.SERPAPI_API_KEY
request.app.state.config.SERPAPI_ENGINE = form_data.web.SERPAPI_ENGINE
request.app.state.config.JINA_API_KEY = form_data.web.JINA_API_KEY
request.app.state.config.BING_SEARCH_V7_ENDPOINT = (
form_data.web.BING_SEARCH_V7_ENDPOINT
)
request.app.state.config.BING_SEARCH_V7_SUBSCRIPTION_KEY = (
form_data.web.BING_SEARCH_V7_SUBSCRIPTION_KEY
)
request.app.state.config.EXA_API_KEY = form_data.web.EXA_API_KEY
request.app.state.config.PERPLEXITY_API_KEY = form_data.web.PERPLEXITY_API_KEY
request.app.state.config.SOUGOU_API_SID = form_data.web.SOUGOU_API_SID
request.app.state.config.SOUGOU_API_SK = form_data.web.SOUGOU_API_SK
# Web loader settings
request.app.state.config.WEB_LOADER_ENGINE = form_data.web.WEB_LOADER_ENGINE
request.app.state.config.ENABLE_WEB_LOADER_SSL_VERIFICATION = (
form_data.web.ENABLE_WEB_LOADER_SSL_VERIFICATION
)
request.app.state.config.PLAYWRIGHT_WS_URL = form_data.web.PLAYWRIGHT_WS_URL
request.app.state.config.PLAYWRIGHT_TIMEOUT = form_data.web.PLAYWRIGHT_TIMEOUT
request.app.state.config.FIRECRAWL_API_KEY = form_data.web.FIRECRAWL_API_KEY
request.app.state.config.FIRECRAWL_API_BASE_URL = (
form_data.web.FIRECRAWL_API_BASE_URL
)
request.app.state.config.EXTERNAL_WEB_SEARCH_URL = (
form_data.web.EXTERNAL_WEB_SEARCH_URL
)
request.app.state.config.EXTERNAL_WEB_SEARCH_API_KEY = (
form_data.web.EXTERNAL_WEB_SEARCH_API_KEY
)
request.app.state.config.EXTERNAL_WEB_LOADER_URL = (
form_data.web.EXTERNAL_WEB_LOADER_URL
)
request.app.state.config.EXTERNAL_WEB_LOADER_API_KEY = (
form_data.web.EXTERNAL_WEB_LOADER_API_KEY
)
request.app.state.config.TAVILY_EXTRACT_DEPTH = (
form_data.web.TAVILY_EXTRACT_DEPTH
)
request.app.state.config.YOUTUBE_LOADER_LANGUAGE = (
form_data.web.YOUTUBE_LOADER_LANGUAGE
)
request.app.state.config.YOUTUBE_LOADER_PROXY_URL = (
form_data.web.YOUTUBE_LOADER_PROXY_URL
)
request.app.state.YOUTUBE_LOADER_TRANSLATION = (
form_data.web.YOUTUBE_LOADER_TRANSLATION
)
return {
"status": True,
# RAG settings
"RAG_TEMPLATE": request.app.state.config.RAG_TEMPLATE,
"TOP_K": request.app.state.config.TOP_K,
"BYPASS_EMBEDDING_AND_RETRIEVAL": request.app.state.config.BYPASS_EMBEDDING_AND_RETRIEVAL,
"RAG_FULL_CONTEXT": request.app.state.config.RAG_FULL_CONTEXT,
# Hybrid search settings
"ENABLE_RAG_HYBRID_SEARCH": request.app.state.config.ENABLE_RAG_HYBRID_SEARCH,
"TOP_K_RERANKER": request.app.state.config.TOP_K_RERANKER,
"RELEVANCE_THRESHOLD": request.app.state.config.RELEVANCE_THRESHOLD,
"HYBRID_BM25_WEIGHT": request.app.state.config.HYBRID_BM25_WEIGHT,
# Content extraction settings
"CONTENT_EXTRACTION_ENGINE": request.app.state.config.CONTENT_EXTRACTION_ENGINE,
"PDF_EXTRACT_IMAGES": request.app.state.config.PDF_EXTRACT_IMAGES,
"DATALAB_MARKER_API_KEY": request.app.state.config.DATALAB_MARKER_API_KEY,
"DATALAB_MARKER_LANGS": request.app.state.config.DATALAB_MARKER_LANGS,
"DATALAB_MARKER_SKIP_CACHE": request.app.state.config.DATALAB_MARKER_SKIP_CACHE,
"DATALAB_MARKER_FORCE_OCR": request.app.state.config.DATALAB_MARKER_FORCE_OCR,
"DATALAB_MARKER_PAGINATE": request.app.state.config.DATALAB_MARKER_PAGINATE,
"DATALAB_MARKER_STRIP_EXISTING_OCR": request.app.state.config.DATALAB_MARKER_STRIP_EXISTING_OCR,
"DATALAB_MARKER_DISABLE_IMAGE_EXTRACTION": request.app.state.config.DATALAB_MARKER_DISABLE_IMAGE_EXTRACTION,
"DATALAB_MARKER_USE_LLM": request.app.state.config.DATALAB_MARKER_USE_LLM,
"DATALAB_MARKER_OUTPUT_FORMAT": request.app.state.config.DATALAB_MARKER_OUTPUT_FORMAT,
"EXTERNAL_DOCUMENT_LOADER_URL": request.app.state.config.EXTERNAL_DOCUMENT_LOADER_URL,
"EXTERNAL_DOCUMENT_LOADER_API_KEY": request.app.state.config.EXTERNAL_DOCUMENT_LOADER_API_KEY,
"TIKA_SERVER_URL": request.app.state.config.TIKA_SERVER_URL,
"DOCLING_SERVER_URL": request.app.state.config.DOCLING_SERVER_URL,
"DOCLING_OCR_ENGINE": request.app.state.config.DOCLING_OCR_ENGINE,
"DOCLING_OCR_LANG": request.app.state.config.DOCLING_OCR_LANG,
"DOCLING_DO_PICTURE_DESCRIPTION": request.app.state.config.DOCLING_DO_PICTURE_DESCRIPTION,
"DOCUMENT_INTELLIGENCE_ENDPOINT": request.app.state.config.DOCUMENT_INTELLIGENCE_ENDPOINT,
"DOCUMENT_INTELLIGENCE_KEY": request.app.state.config.DOCUMENT_INTELLIGENCE_KEY,
"MISTRAL_OCR_API_KEY": request.app.state.config.MISTRAL_OCR_API_KEY,
# Reranking settings
"RAG_RERANKING_MODEL": request.app.state.config.RAG_RERANKING_MODEL,
"RAG_RERANKING_ENGINE": request.app.state.config.RAG_RERANKING_ENGINE,
"RAG_EXTERNAL_RERANKER_URL": request.app.state.config.RAG_EXTERNAL_RERANKER_URL,
"RAG_EXTERNAL_RERANKER_API_KEY": request.app.state.config.RAG_EXTERNAL_RERANKER_API_KEY,
# Chunking settings
"TEXT_SPLITTER": request.app.state.config.TEXT_SPLITTER,
"CHUNK_SIZE": request.app.state.config.CHUNK_SIZE,
"CHUNK_OVERLAP": request.app.state.config.CHUNK_OVERLAP,
# File upload settings
"FILE_MAX_SIZE": request.app.state.config.FILE_MAX_SIZE,
"FILE_MAX_COUNT": request.app.state.config.FILE_MAX_COUNT,
"ALLOWED_FILE_EXTENSIONS": request.app.state.config.ALLOWED_FILE_EXTENSIONS,
# Integration settings
"ENABLE_GOOGLE_DRIVE_INTEGRATION": request.app.state.config.ENABLE_GOOGLE_DRIVE_INTEGRATION,
"ENABLE_ONEDRIVE_INTEGRATION": request.app.state.config.ENABLE_ONEDRIVE_INTEGRATION,
# Web search settings
"web": {
"ENABLE_WEB_SEARCH": request.app.state.config.ENABLE_WEB_SEARCH,
"WEB_SEARCH_ENGINE": request.app.state.config.WEB_SEARCH_ENGINE,
"WEB_SEARCH_TRUST_ENV": request.app.state.config.WEB_SEARCH_TRUST_ENV,
"WEB_SEARCH_RESULT_COUNT": request.app.state.config.WEB_SEARCH_RESULT_COUNT,
"WEB_SEARCH_CONCURRENT_REQUESTS": request.app.state.config.WEB_SEARCH_CONCURRENT_REQUESTS,
"WEB_SEARCH_DOMAIN_FILTER_LIST": request.app.state.config.WEB_SEARCH_DOMAIN_FILTER_LIST,
"BYPASS_WEB_SEARCH_EMBEDDING_AND_RETRIEVAL": request.app.state.config.BYPASS_WEB_SEARCH_EMBEDDING_AND_RETRIEVAL,
"BYPASS_WEB_SEARCH_WEB_LOADER": request.app.state.config.BYPASS_WEB_SEARCH_WEB_LOADER,
"SEARXNG_QUERY_URL": request.app.state.config.SEARXNG_QUERY_URL,
"YACY_QUERY_URL": request.app.state.config.YACY_QUERY_URL,
"YACY_USERNAME": request.app.state.config.YACY_USERNAME,
"YACY_PASSWORD": request.app.state.config.YACY_PASSWORD,
"GOOGLE_PSE_API_KEY": request.app.state.config.GOOGLE_PSE_API_KEY,
"GOOGLE_PSE_ENGINE_ID": request.app.state.config.GOOGLE_PSE_ENGINE_ID,
"BRAVE_SEARCH_API_KEY": request.app.state.config.BRAVE_SEARCH_API_KEY,
"KAGI_SEARCH_API_KEY": request.app.state.config.KAGI_SEARCH_API_KEY,
"MOJEEK_SEARCH_API_KEY": request.app.state.config.MOJEEK_SEARCH_API_KEY,
"BOCHA_SEARCH_API_KEY": request.app.state.config.BOCHA_SEARCH_API_KEY,
"SERPSTACK_API_KEY": request.app.state.config.SERPSTACK_API_KEY,
"SERPSTACK_HTTPS": request.app.state.config.SERPSTACK_HTTPS,
"SERPER_API_KEY": request.app.state.config.SERPER_API_KEY,
"SERPLY_API_KEY": request.app.state.config.SERPLY_API_KEY,
"TAVILY_API_KEY": request.app.state.config.TAVILY_API_KEY,
"SEARCHAPI_API_KEY": request.app.state.config.SEARCHAPI_API_KEY,
"SEARCHAPI_ENGINE": request.app.state.config.SEARCHAPI_ENGINE,
"SERPAPI_API_KEY": request.app.state.config.SERPAPI_API_KEY,
"SERPAPI_ENGINE": request.app.state.config.SERPAPI_ENGINE,
"JINA_API_KEY": request.app.state.config.JINA_API_KEY,
"BING_SEARCH_V7_ENDPOINT": request.app.state.config.BING_SEARCH_V7_ENDPOINT,
"BING_SEARCH_V7_SUBSCRIPTION_KEY": request.app.state.config.BING_SEARCH_V7_SUBSCRIPTION_KEY,
"EXA_API_KEY": request.app.state.config.EXA_API_KEY,
"PERPLEXITY_API_KEY": request.app.state.config.PERPLEXITY_API_KEY,
"SOUGOU_API_SID": request.app.state.config.SOUGOU_API_SID,
"SOUGOU_API_SK": request.app.state.config.SOUGOU_API_SK,
"WEB_LOADER_ENGINE": request.app.state.config.WEB_LOADER_ENGINE,
"ENABLE_WEB_LOADER_SSL_VERIFICATION": request.app.state.config.ENABLE_WEB_LOADER_SSL_VERIFICATION,
"PLAYWRIGHT_WS_URL": request.app.state.config.PLAYWRIGHT_WS_URL,
"PLAYWRIGHT_TIMEOUT": request.app.state.config.PLAYWRIGHT_TIMEOUT,
"FIRECRAWL_API_KEY": request.app.state.config.FIRECRAWL_API_KEY,
"FIRECRAWL_API_BASE_URL": request.app.state.config.FIRECRAWL_API_BASE_URL,
"TAVILY_EXTRACT_DEPTH": request.app.state.config.TAVILY_EXTRACT_DEPTH,
"EXTERNAL_WEB_SEARCH_URL": request.app.state.config.EXTERNAL_WEB_SEARCH_URL,
"EXTERNAL_WEB_SEARCH_API_KEY": request.app.state.config.EXTERNAL_WEB_SEARCH_API_KEY,
"EXTERNAL_WEB_LOADER_URL": request.app.state.config.EXTERNAL_WEB_LOADER_URL,
"EXTERNAL_WEB_LOADER_API_KEY": request.app.state.config.EXTERNAL_WEB_LOADER_API_KEY,
"YOUTUBE_LOADER_LANGUAGE": request.app.state.config.YOUTUBE_LOADER_LANGUAGE,
"YOUTUBE_LOADER_PROXY_URL": request.app.state.config.YOUTUBE_LOADER_PROXY_URL,
"YOUTUBE_LOADER_TRANSLATION": request.app.state.YOUTUBE_LOADER_TRANSLATION,
},
}
####################################
#
# Document process and retrieval
#
####################################
def save_docs_to_vector_db(
request: Request,
docs,
collection_name,
metadata: Optional[dict] = None,
overwrite: bool = False,
split: bool = True,
add: bool = False,
user=None,
) -> bool:
def _get_docs_info(docs: list[Document]) -> str:
docs_info = set()
# Trying to select relevant metadata identifying the document.
for doc in docs:
metadata = getattr(doc, "metadata", {})
doc_name = metadata.get("name", "")
if not doc_name:
doc_name = metadata.get("title", "")
if not doc_name:
doc_name = metadata.get("source", "")
if doc_name:
docs_info.add(doc_name)
return ", ".join(docs_info)
log.info(
f"save_docs_to_vector_db: document {_get_docs_info(docs)} {collection_name}"
)
# Check if entries with the same hash (metadata.hash) already exist
if metadata and "hash" in metadata:
result = VECTOR_DB_CLIENT.query(
collection_name=collection_name,
filter={"hash": metadata["hash"]},
)
if result is not None:
existing_doc_ids = result.ids[0]
if existing_doc_ids:
log.info(f"Document with hash {metadata['hash']} already exists")
raise ValueError(ERROR_MESSAGES.DUPLICATE_CONTENT)
if split:
# Apply advanced content-aware splitting and text cleaning
processed_docs = []
for doc in docs:
# Clean the text content before chunking
if not doc.page_content:
continue
# Apply text cleaning before chunking using new modular system
cleaned_content = TextCleaner.clean_for_chunking(doc.page_content)
# Create semantic chunks from cleaned content
chunks = create_semantic_chunks(
cleaned_content,
request.app.state.config.CHUNK_SIZE,
request.app.state.config.CHUNK_OVERLAP
)
# Create new documents for each chunk
for i, chunk in enumerate(chunks):
chunk_metadata = {
**doc.metadata,
"chunk_index": i,
"total_chunks": len(chunks)
}
processed_docs.append(Document(
page_content=chunk,
metadata=chunk_metadata
))
docs = processed_docs
if len(docs) == 0:
raise ValueError(ERROR_MESSAGES.EMPTY_CONTENT)
texts = [doc.page_content for doc in docs]
metadatas = [
{
**doc.metadata,
**(metadata if metadata else {}),
"embedding_config": json.dumps(
{
"engine": request.app.state.config.RAG_EMBEDDING_ENGINE,
"model": request.app.state.config.RAG_EMBEDDING_MODEL,
}
),
}
for doc in docs
]
# ChromaDB does not like datetime formats
# for meta-data so convert them to string.
for metadata in metadatas:
for key, value in metadata.items():
if (
isinstance(value, datetime)
or isinstance(value, list)
or isinstance(value, dict)
):
metadata[key] = str(value)
try:
if VECTOR_DB_CLIENT.has_collection(collection_name=collection_name):
log.info(f"collection {collection_name} already exists")
if overwrite:
VECTOR_DB_CLIENT.delete_collection(collection_name=collection_name)
log.info(f"deleting existing collection {collection_name}")
elif add is False:
log.info(
f"collection {collection_name} already exists, overwrite is False and add is False"
)
return True
log.info(f"adding to collection {collection_name}")
embedding_function = get_embedding_function(
request.app.state.config.RAG_EMBEDDING_ENGINE,
request.app.state.config.RAG_EMBEDDING_MODEL,
request.app.state.ef,
(
request.app.state.config.RAG_OPENAI_API_BASE_URL
if request.app.state.config.RAG_EMBEDDING_ENGINE == "openai"
else (
request.app.state.config.RAG_OLLAMA_BASE_URL
if request.app.state.config.RAG_EMBEDDING_ENGINE == "ollama"
else request.app.state.config.RAG_AZURE_OPENAI_BASE_URL
)
),
(
request.app.state.config.RAG_OPENAI_API_KEY
if request.app.state.config.RAG_EMBEDDING_ENGINE == "openai"
else (
request.app.state.config.RAG_OLLAMA_API_KEY
if request.app.state.config.RAG_EMBEDDING_ENGINE == "ollama"
else request.app.state.config.RAG_AZURE_OPENAI_API_KEY
)
),
request.app.state.config.RAG_EMBEDDING_BATCH_SIZE,
azure_api_version=(
request.app.state.config.RAG_AZURE_OPENAI_API_VERSION
if request.app.state.config.RAG_EMBEDDING_ENGINE == "azure_openai"
else None
),
)
# Prepare texts for embedding using the new modular cleaning system
cleaned_texts = [TextCleaner.clean_for_embedding(text) for text in texts]
embeddings = embedding_function(
cleaned_texts,
prefix=RAG_EMBEDDING_CONTENT_PREFIX,
user=user,
)
# Store the cleaned text using the new modular cleaning system
items = []
for idx in range(len(texts)):
# Apply consistent storage-level cleaning
text_to_store = TextCleaner.clean_for_storage(texts[idx])
items.append({
"id": str(uuid.uuid4()),
"text": text_to_store,
"vector": embeddings[idx],
"metadata": metadatas[idx],
})
VECTOR_DB_CLIENT.insert(
collection_name=collection_name,
items=items,
)
return True
except Exception as e:
log.exception(e)
raise e
class ProcessFileForm(BaseModel):
file_id: str
content: Optional[str] = None
collection_name: Optional[str] = None
@router.post("/process/file")
def process_file(
request: Request,
form_data: ProcessFileForm,
user=Depends(get_verified_user),
):
try:
file = Files.get_file_by_id(form_data.file_id)
collection_name = form_data.collection_name
if collection_name is None:
collection_name = f"file-{file.id}"
if form_data.content:
# Update the content in the file
# Usage: /files/{file_id}/data/content/update, /files/ (audio file upload pipeline)
try:
# /files/{file_id}/data/content/update
VECTOR_DB_CLIENT.delete_collection(collection_name=f"file-{file.id}")
except:
# Audio file upload pipeline
pass
docs = [
Document(
page_content=TextCleaner.clean_for_chunking(form_data.content.replace("
", "\n")),
metadata={
**file.meta,
"name": file.filename,
"created_by": file.user_id,
"file_id": file.id,
"source": file.filename,
},
)
]
text_content = form_data.content
elif form_data.collection_name:
# Check if the file has already been processed and save the content
# Usage: /knowledge/{id}/file/add, /knowledge/{id}/file/update
result = VECTOR_DB_CLIENT.query(
collection_name=f"file-{file.id}", filter={"file_id": file.id}
)
if result is not None and len(result.ids[0]) > 0:
docs = [
Document(
page_content=TextCleaner.clean_for_chunking(result.documents[0][idx]),
metadata=result.metadatas[0][idx],
)
for idx, id in enumerate(result.ids[0])
]
else:
docs = [
Document(
page_content=TextCleaner.clean_for_chunking(file.data.get("content", "")),
metadata={
**file.meta,
"name": file.filename,
"created_by": file.user_id,
"file_id": file.id,
"source": file.filename,
},
)
]
text_content = file.data.get("content", "")
else:
# Process the file and save the content
# Usage: /files/
file_path = file.path
if file_path:
file_path = Storage.get_file(file_path)
loader = Loader(
engine=request.app.state.config.CONTENT_EXTRACTION_ENGINE,
DATALAB_MARKER_API_KEY=request.app.state.config.DATALAB_MARKER_API_KEY,
DATALAB_MARKER_LANGS=request.app.state.config.DATALAB_MARKER_LANGS,
DATALAB_MARKER_SKIP_CACHE=request.app.state.config.DATALAB_MARKER_SKIP_CACHE,
DATALAB_MARKER_FORCE_OCR=request.app.state.config.DATALAB_MARKER_FORCE_OCR,
DATALAB_MARKER_PAGINATE=request.app.state.config.DATALAB_MARKER_PAGINATE,
DATALAB_MARKER_STRIP_EXISTING_OCR=request.app.state.config.DATALAB_MARKER_STRIP_EXISTING_OCR,
DATALAB_MARKER_DISABLE_IMAGE_EXTRACTION=request.app.state.config.DATALAB_MARKER_DISABLE_IMAGE_EXTRACTION,
DATALAB_MARKER_USE_LLM=request.app.state.config.DATALAB_MARKER_USE_LLM,
DATALAB_MARKER_OUTPUT_FORMAT=request.app.state.config.DATALAB_MARKER_OUTPUT_FORMAT,
EXTERNAL_DOCUMENT_LOADER_URL=request.app.state.config.EXTERNAL_DOCUMENT_LOADER_URL,
EXTERNAL_DOCUMENT_LOADER_API_KEY=request.app.state.config.EXTERNAL_DOCUMENT_LOADER_API_KEY,
TIKA_SERVER_URL=request.app.state.config.TIKA_SERVER_URL,
DOCLING_SERVER_URL=request.app.state.config.DOCLING_SERVER_URL,
DOCLING_OCR_ENGINE=request.app.state.config.DOCLING_OCR_ENGINE,
DOCLING_OCR_LANG=request.app.state.config.DOCLING_OCR_LANG,
DOCLING_DO_PICTURE_DESCRIPTION=request.app.state.config.DOCLING_DO_PICTURE_DESCRIPTION,
PDF_EXTRACT_IMAGES=request.app.state.config.PDF_EXTRACT_IMAGES,
DOCUMENT_INTELLIGENCE_ENDPOINT=request.app.state.config.DOCUMENT_INTELLIGENCE_ENDPOINT,
DOCUMENT_INTELLIGENCE_KEY=request.app.state.config.DOCUMENT_INTELLIGENCE_KEY,
MISTRAL_OCR_API_KEY=request.app.state.config.MISTRAL_OCR_API_KEY,
)
docs = loader.load(
file.filename, file.meta.get("content_type"), file_path
)
# Clean the loaded documents before processing
cleaned_docs = []
for doc in docs:
cleaned_content = TextCleaner.clean_for_chunking(doc.page_content)
cleaned_docs.append(Document(
page_content=cleaned_content,
metadata={
**doc.metadata,
"name": file.filename,
"created_by": file.user_id,
"file_id": file.id,
"source": file.filename,
},
))
docs = cleaned_docs
else:
docs = [
Document(
page_content=TextCleaner.clean_for_chunking(file.data.get("content", "")),
metadata={
**file.meta,
"name": file.filename,
"created_by": file.user_id,
"file_id": file.id,
"source": file.filename,
},
)
]
text_content = " ".join([doc.page_content for doc in docs if doc.page_content])
# Ensure text_content is never None or empty for hash calculation
if not text_content:
text_content = ""
log.debug(f"text_content: {text_content}")
Files.update_file_data_by_id(
file.id,
{"content": text_content},
)
# Ensure we always pass a valid string to calculate_sha256_string
hash_input = text_content if text_content else ""
hash = calculate_sha256_string(hash_input)
Files.update_file_hash_by_id(file.id, hash)
if not request.app.state.config.BYPASS_EMBEDDING_AND_RETRIEVAL:
try:
result = save_docs_to_vector_db(
request,
docs=docs,
collection_name=collection_name,
metadata={
"file_id": file.id,
"name": file.filename,
"hash": hash,
},
add=(True if form_data.collection_name else False),
user=user,
)
if result:
Files.update_file_metadata_by_id(
file.id,
{
"collection_name": collection_name,
},
)
return {
"status": True,
"collection_name": collection_name,
"filename": file.filename,
"content": text_content,
}
except Exception as e:
raise e
else:
return {
"status": True,
"collection_name": None,
"filename": file.filename,
"content": text_content,
}
except Exception as e:
log.exception(e)
if "No pandoc was found" in str(e):
raise HTTPException(
status_code=status.HTTP_400_BAD_REQUEST,
detail=ERROR_MESSAGES.PANDOC_NOT_INSTALLED,
)
else:
raise HTTPException(
status_code=status.HTTP_400_BAD_REQUEST,
detail=str(e),
)
class ProcessTextForm(BaseModel):
name: str
content: str
collection_name: Optional[str] = None
@router.post("/process/text")
def process_text(
request: Request,
form_data: ProcessTextForm,
user=Depends(get_verified_user),
):
collection_name = form_data.collection_name
if collection_name is None:
collection_name = calculate_sha256_string(form_data.content)
docs = [
Document(
page_content=TextCleaner.clean_for_chunking(form_data.content),
metadata={"name": form_data.name, "created_by": user.id},
)
]
text_content = form_data.content
log.debug(f"text_content: {text_content}")
result = save_docs_to_vector_db(request, docs, collection_name, user=user)
if result:
return {
"status": True,
"collection_name": collection_name,
"content": text_content,
}
else:
raise HTTPException(
status_code=status.HTTP_500_INTERNAL_SERVER_ERROR,
detail=ERROR_MESSAGES.DEFAULT(),
)
@router.post("/process/youtube")
def process_youtube_video(
request: Request, form_data: ProcessUrlForm, user=Depends(get_verified_user)
):
try:
collection_name = form_data.collection_name
if not collection_name:
collection_name = calculate_sha256_string(form_data.url)[:63]
loader = YoutubeLoader(
form_data.url,
language=request.app.state.config.YOUTUBE_LOADER_LANGUAGE,
proxy_url=request.app.state.config.YOUTUBE_LOADER_PROXY_URL,
)
docs = loader.load()
content = " ".join([doc.page_content for doc in docs])
log.debug(f"text_content: {content}")
save_docs_to_vector_db(
request, docs, collection_name, overwrite=True, user=user
)
return {
"status": True,
"collection_name": collection_name,
"filename": form_data.url,
"file": {
"data": {
"content": content,
},
"meta": {
"name": form_data.url,
},
},
}
except Exception as e:
log.exception(e)
raise HTTPException(
status_code=status.HTTP_400_BAD_REQUEST,
detail=ERROR_MESSAGES.DEFAULT(e),
)
@router.post("/process/web")
def process_web(
request: Request, form_data: ProcessUrlForm, user=Depends(get_verified_user)
):
try:
collection_name = form_data.collection_name
if not collection_name:
collection_name = calculate_sha256_string(form_data.url)[:63]
loader = get_web_loader(
form_data.url,
verify_ssl=request.app.state.config.ENABLE_WEB_LOADER_SSL_VERIFICATION,
requests_per_second=request.app.state.config.WEB_SEARCH_CONCURRENT_REQUESTS,
)
docs = loader.load()
content = " ".join([doc.page_content for doc in docs])
log.debug(f"text_content: {content}")
if not request.app.state.config.BYPASS_WEB_SEARCH_EMBEDDING_AND_RETRIEVAL:
save_docs_to_vector_db(
request, docs, collection_name, overwrite=True, user=user
)
else:
collection_name = None
return {
"status": True,
"collection_name": collection_name,
"filename": form_data.url,
"file": {
"data": {
"content": content,
},
"meta": {
"name": form_data.url,
"source": form_data.url,
},
},
}
except Exception as e:
log.exception(e)
raise HTTPException(
status_code=status.HTTP_400_BAD_REQUEST,
detail=ERROR_MESSAGES.DEFAULT(e),
)
def search_web(request: Request, engine: str, query: str) -> list[SearchResult]:
"""Search the web using a search engine and return the results as a list of SearchResult objects.
Will look for a search engine API key in environment variables in the following order:
- SEARXNG_QUERY_URL
- YACY_QUERY_URL + YACY_USERNAME + YACY_PASSWORD
- GOOGLE_PSE_API_KEY + GOOGLE_PSE_ENGINE_ID
- BRAVE_SEARCH_API_KEY
- KAGI_SEARCH_API_KEY
- MOJEEK_SEARCH_API_KEY
- BOCHA_SEARCH_API_KEY
- SERPSTACK_API_KEY
- SERPER_API_KEY
- SERPLY_API_KEY
- TAVILY_API_KEY
- EXA_API_KEY
- PERPLEXITY_API_KEY
- SOUGOU_API_SID + SOUGOU_API_SK
- SEARCHAPI_API_KEY + SEARCHAPI_ENGINE (by default `google`)
- SERPAPI_API_KEY + SERPAPI_ENGINE (by default `google`)
Args:
query (str): The query to search for
"""
# TODO: add playwright to search the web
if engine == "searxng":
if request.app.state.config.SEARXNG_QUERY_URL:
return search_searxng(
request.app.state.config.SEARXNG_QUERY_URL,
query,
request.app.state.config.WEB_SEARCH_RESULT_COUNT,
request.app.state.config.WEB_SEARCH_DOMAIN_FILTER_LIST,
)
else:
raise Exception("No SEARXNG_QUERY_URL found in environment variables")
elif engine == "yacy":
if request.app.state.config.YACY_QUERY_URL:
return search_yacy(
request.app.state.config.YACY_QUERY_URL,
request.app.state.config.YACY_USERNAME,
request.app.state.config.YACY_PASSWORD,
query,
request.app.state.config.WEB_SEARCH_RESULT_COUNT,
request.app.state.config.WEB_SEARCH_DOMAIN_FILTER_LIST,
)
else:
raise Exception("No YACY_QUERY_URL found in environment variables")
elif engine == "google_pse":
if (
request.app.state.config.GOOGLE_PSE_API_KEY
and request.app.state.config.GOOGLE_PSE_ENGINE_ID
):
return search_google_pse(
request.app.state.config.GOOGLE_PSE_API_KEY,
request.app.state.config.GOOGLE_PSE_ENGINE_ID,
query,
request.app.state.config.WEB_SEARCH_RESULT_COUNT,
request.app.state.config.WEB_SEARCH_DOMAIN_FILTER_LIST,
)
else:
raise Exception(
"No GOOGLE_PSE_API_KEY or GOOGLE_PSE_ENGINE_ID found in environment variables"
)
elif engine == "brave":
if request.app.state.config.BRAVE_SEARCH_API_KEY:
return search_brave(
request.app.state.config.BRAVE_SEARCH_API_KEY,
query,
request.app.state.config.WEB_SEARCH_RESULT_COUNT,
request.app.state.config.WEB_SEARCH_DOMAIN_FILTER_LIST,
)
else:
raise Exception("No BRAVE_SEARCH_API_KEY found in environment variables")
elif engine == "kagi":
if request.app.state.config.KAGI_SEARCH_API_KEY:
return search_kagi(
request.app.state.config.KAGI_SEARCH_API_KEY,
query,
request.app.state.config.WEB_SEARCH_RESULT_COUNT,
request.app.state.config.WEB_SEARCH_DOMAIN_FILTER_LIST,
)
else:
raise Exception("No KAGI_SEARCH_API_KEY found in environment variables")
elif engine == "mojeek":
if request.app.state.config.MOJEEK_SEARCH_API_KEY:
return search_mojeek(
request.app.state.config.MOJEEK_SEARCH_API_KEY,
query,
request.app.state.config.WEB_SEARCH_RESULT_COUNT,
request.app.state.config.WEB_SEARCH_DOMAIN_FILTER_LIST,
)
else:
raise Exception("No MOJEEK_SEARCH_API_KEY found in environment variables")
elif engine == "bocha":
if request.app.state.config.BOCHA_SEARCH_API_KEY:
return search_bocha(
request.app.state.config.BOCHA_SEARCH_API_KEY,
query,
request.app.state.config.WEB_SEARCH_RESULT_COUNT,
request.app.state.config.WEB_SEARCH_DOMAIN_FILTER_LIST,
)
else:
raise Exception("No BOCHA_SEARCH_API_KEY found in environment variables")
elif engine == "serpstack":
if request.app.state.config.SERPSTACK_API_KEY:
return search_serpstack(
request.app.state.config.SERPSTACK_API_KEY,
query,
request.app.state.config.WEB_SEARCH_RESULT_COUNT,
request.app.state.config.WEB_SEARCH_DOMAIN_FILTER_LIST,
https_enabled=request.app.state.config.SERPSTACK_HTTPS,
)
else:
raise Exception("No SERPSTACK_API_KEY found in environment variables")
elif engine == "serper":
if request.app.state.config.SERPER_API_KEY:
return search_serper(
request.app.state.config.SERPER_API_KEY,
query,
request.app.state.config.WEB_SEARCH_RESULT_COUNT,
request.app.state.config.WEB_SEARCH_DOMAIN_FILTER_LIST,
)
else:
raise Exception("No SERPER_API_KEY found in environment variables")
elif engine == "serply":
if request.app.state.config.SERPLY_API_KEY:
return search_serply(
request.app.state.config.SERPLY_API_KEY,
query,
request.app.state.config.WEB_SEARCH_RESULT_COUNT,
request.app.state.config.WEB_SEARCH_DOMAIN_FILTER_LIST,
)
else:
raise Exception("No SERPLY_API_KEY found in environment variables")
elif engine == "duckduckgo":
return search_duckduckgo(
query,
request.app.state.config.WEB_SEARCH_RESULT_COUNT,
request.app.state.config.WEB_SEARCH_DOMAIN_FILTER_LIST,
)
elif engine == "tavily":
if request.app.state.config.TAVILY_API_KEY:
return search_tavily(
request.app.state.config.TAVILY_API_KEY,
query,
request.app.state.config.WEB_SEARCH_RESULT_COUNT,
request.app.state.config.WEB_SEARCH_DOMAIN_FILTER_LIST,
)
else:
raise Exception("No TAVILY_API_KEY found in environment variables")
elif engine == "searchapi":
if request.app.state.config.SEARCHAPI_API_KEY:
return search_searchapi(
request.app.state.config.SEARCHAPI_API_KEY,
request.app.state.config.SEARCHAPI_ENGINE,
query,
request.app.state.config.WEB_SEARCH_RESULT_COUNT,
request.app.state.config.WEB_SEARCH_DOMAIN_FILTER_LIST,
)
else:
raise Exception("No SEARCHAPI_API_KEY found in environment variables")
elif engine == "serpapi":
if request.app.state.config.SERPAPI_API_KEY:
return search_serpapi(
request.app.state.config.SERPAPI_API_KEY,
request.app.state.config.SERPAPI_ENGINE,
query,
request.app.state.config.WEB_SEARCH_RESULT_COUNT,
request.app.state.config.WEB_SEARCH_DOMAIN_FILTER_LIST,
)
else:
raise Exception("No SERPAPI_API_KEY found in environment variables")
elif engine == "jina":
return search_jina(
request.app.state.config.JINA_API_KEY,
query,
request.app.state.config.WEB_SEARCH_RESULT_COUNT,
)
elif engine == "bing":
return search_bing(
request.app.state.config.BING_SEARCH_V7_SUBSCRIPTION_KEY,
request.app.state.config.BING_SEARCH_V7_ENDPOINT,
str(DEFAULT_LOCALE),
query,
request.app.state.config.WEB_SEARCH_RESULT_COUNT,
request.app.state.config.WEB_SEARCH_DOMAIN_FILTER_LIST,
)
elif engine == "exa":
return search_exa(
request.app.state.config.EXA_API_KEY,
query,
request.app.state.config.WEB_SEARCH_RESULT_COUNT,
request.app.state.config.WEB_SEARCH_DOMAIN_FILTER_LIST,
)
elif engine == "perplexity":
return search_perplexity(
request.app.state.config.PERPLEXITY_API_KEY,
query,
request.app.state.config.WEB_SEARCH_RESULT_COUNT,
request.app.state.config.WEB_SEARCH_DOMAIN_FILTER_LIST,
)
elif engine == "sougou":
if (
request.app.state.config.SOUGOU_API_SID
and request.app.state.config.SOUGOU_API_SK
):
return search_sougou(
request.app.state.config.SOUGOU_API_SID,
request.app.state.config.SOUGOU_API_SK,
query,
request.app.state.config.WEB_SEARCH_RESULT_COUNT,
request.app.state.config.WEB_SEARCH_DOMAIN_FILTER_LIST,
)
else:
raise Exception(
"No SOUGOU_API_SID or SOUGOU_API_SK found in environment variables"
)
elif engine == "firecrawl":
return search_firecrawl(
request.app.state.config.FIRECRAWL_API_BASE_URL,
request.app.state.config.FIRECRAWL_API_KEY,
query,
request.app.state.config.WEB_SEARCH_RESULT_COUNT,
request.app.state.config.WEB_SEARCH_DOMAIN_FILTER_LIST,
)
elif engine == "external":
return search_external(
request.app.state.config.EXTERNAL_WEB_SEARCH_URL,
request.app.state.config.EXTERNAL_WEB_SEARCH_API_KEY,
query,
request.app.state.config.WEB_SEARCH_RESULT_COUNT,
request.app.state.config.WEB_SEARCH_DOMAIN_FILTER_LIST,
)
else:
raise Exception("No search engine API key found in environment variables")
@router.post("/process/web/search")
async def process_web_search(
request: Request, form_data: SearchForm, user=Depends(get_verified_user)
):
urls = []
try:
logging.info(
f"trying to web search with {request.app.state.config.WEB_SEARCH_ENGINE, form_data.queries}"
)
search_tasks = [
run_in_threadpool(
search_web,
request,
request.app.state.config.WEB_SEARCH_ENGINE,
query,
)
for query in form_data.queries
]
search_results = await asyncio.gather(*search_tasks)
for result in search_results:
if result:
for item in result:
if item and item.link:
urls.append(item.link)
urls = list(dict.fromkeys(urls))
log.debug(f"urls: {urls}")
except Exception as e:
log.exception(e)
raise HTTPException(
status_code=status.HTTP_400_BAD_REQUEST,
detail=ERROR_MESSAGES.WEB_SEARCH_ERROR(e),
)
try:
if request.app.state.config.BYPASS_WEB_SEARCH_WEB_LOADER:
docs = [
Document(
page_content=result.snippet,
metadata={
"source": result.link,
"title": result.title,
"snippet": result.snippet,
"link": result.link,
},
)
for result in search_results
if hasattr(result, "snippet")
]
else:
loader = get_web_loader(
urls,
verify_ssl=request.app.state.config.ENABLE_WEB_LOADER_SSL_VERIFICATION,
requests_per_second=request.app.state.config.WEB_SEARCH_CONCURRENT_REQUESTS,
trust_env=request.app.state.config.WEB_SEARCH_TRUST_ENV,
)
docs = await loader.aload()
urls = [
doc.metadata.get("source") for doc in docs if doc.metadata.get("source")
] # only keep the urls returned by the loader
if request.app.state.config.BYPASS_WEB_SEARCH_EMBEDDING_AND_RETRIEVAL:
return {
"status": True,
"collection_name": None,
"filenames": urls,
"docs": [
{
"content": doc.page_content,
"metadata": doc.metadata,
}
for doc in docs
],
"loaded_count": len(docs),
}
else:
# Create a single collection for all documents
collection_name = (
f"web-search-{calculate_sha256_string('-'.join(form_data.queries))}"[
:63
]
)
try:
await run_in_threadpool(
save_docs_to_vector_db,
request,
docs,
collection_name,
overwrite=True,
user=user,
)
except Exception as e:
log.debug(f"error saving docs: {e}")
return {
"status": True,
"collection_names": [collection_name],
"filenames": urls,
"loaded_count": len(docs),
}
except Exception as e:
log.exception(e)
raise HTTPException(
status_code=status.HTTP_400_BAD_REQUEST,
detail=ERROR_MESSAGES.DEFAULT(e),
)
class QueryDocForm(BaseModel):
collection_name: str
query: str
k: Optional[int] = None
k_reranker: Optional[int] = None
r: Optional[float] = None
hybrid: Optional[bool] = None
@router.post("/query/doc")
def query_doc_handler(
request: Request,
form_data: QueryDocForm,
user=Depends(get_verified_user),
):
try:
if request.app.state.config.ENABLE_RAG_HYBRID_SEARCH:
collection_results = {}
collection_results[form_data.collection_name] = VECTOR_DB_CLIENT.get(
collection_name=form_data.collection_name
)
return query_doc_with_hybrid_search(
collection_name=form_data.collection_name,
collection_result=collection_results[form_data.collection_name],
query=form_data.query,
embedding_function=lambda query, prefix: request.app.state.EMBEDDING_FUNCTION(
query, prefix=prefix, user=user
),
k=form_data.k if form_data.k else request.app.state.config.TOP_K,
reranking_function=request.app.state.rf,
k_reranker=form_data.k_reranker
or request.app.state.config.TOP_K_RERANKER,
r=(
form_data.r
if form_data.r
else request.app.state.config.RELEVANCE_THRESHOLD
),
hybrid_bm25_weight=(
form_data.hybrid_bm25_weight
if form_data.hybrid_bm25_weight
else request.app.state.config.HYBRID_BM25_WEIGHT
),
user=user,
)
else:
return query_doc(
collection_name=form_data.collection_name,
query_embedding=request.app.state.EMBEDDING_FUNCTION(
form_data.query, prefix=RAG_EMBEDDING_QUERY_PREFIX, user=user
),
k=form_data.k if form_data.k else request.app.state.config.TOP_K,
user=user,
)
except Exception as e:
log.exception(e)
raise HTTPException(
status_code=status.HTTP_400_BAD_REQUEST,
detail=ERROR_MESSAGES.DEFAULT(e),
)
class QueryCollectionsForm(BaseModel):
collection_names: list[str]
query: str
k: Optional[int] = None
k_reranker: Optional[int] = None
r: Optional[float] = None
hybrid: Optional[bool] = None
hybrid_bm25_weight: Optional[float] = None
@router.post("/query/collection")
def query_collection_handler(
request: Request,
form_data: QueryCollectionsForm,
user=Depends(get_verified_user),
):
try:
if request.app.state.config.ENABLE_RAG_HYBRID_SEARCH:
return query_collection_with_hybrid_search(
collection_names=form_data.collection_names,
queries=[form_data.query],
embedding_function=lambda query, prefix: request.app.state.EMBEDDING_FUNCTION(
query, prefix=prefix, user=user
),
k=form_data.k if form_data.k else request.app.state.config.TOP_K,
reranking_function=request.app.state.rf,
k_reranker=form_data.k_reranker
or request.app.state.config.TOP_K_RERANKER,
r=(
form_data.r
if form_data.r
else request.app.state.config.RELEVANCE_THRESHOLD
),
hybrid_bm25_weight=(
form_data.hybrid_bm25_weight
if form_data.hybrid_bm25_weight
else request.app.state.config.HYBRID_BM25_WEIGHT
),
)
else:
return query_collection(
collection_names=form_data.collection_names,
queries=[form_data.query],
embedding_function=lambda query, prefix: request.app.state.EMBEDDING_FUNCTION(
query, prefix=prefix, user=user
),
k=form_data.k if form_data.k else request.app.state.config.TOP_K,
)
except Exception as e:
log.exception(e)
raise HTTPException(
status_code=status.HTTP_400_BAD_REQUEST,
detail=ERROR_MESSAGES.DEFAULT(e),
)
####################################
#
# Vector DB operations
#
####################################
class DeleteForm(BaseModel):
collection_name: str
file_id: str
@router.post("/delete")
def delete_entries_from_collection(form_data: DeleteForm, user=Depends(get_admin_user)):
try:
if VECTOR_DB_CLIENT.has_collection(collection_name=form_data.collection_name):
file = Files.get_file_by_id(form_data.file_id)
hash = file.hash
VECTOR_DB_CLIENT.delete(
collection_name=form_data.collection_name,
metadata={"hash": hash},
)
return {"status": True}
else:
return {"status": False}
except Exception as e:
log.exception(e)
return {"status": False}
@router.post("/reset/db")
def reset_vector_db(user=Depends(get_admin_user)):
VECTOR_DB_CLIENT.reset()
Knowledges.delete_all_knowledge()
@router.post("/reset/uploads")
def reset_upload_dir(user=Depends(get_admin_user)) -> bool:
folder = f"{UPLOAD_DIR}"
try:
# Check if the directory exists
if os.path.exists(folder):
# Iterate over all the files and directories in the specified directory
for filename in os.listdir(folder):
file_path = os.path.join(folder, filename)
try:
if os.path.isfile(file_path) or os.path.islink(file_path):
os.unlink(file_path) # Remove the file or link
elif os.path.isdir(file_path):
shutil.rmtree(file_path) # Remove the directory
except Exception as e:
log.exception(f"Failed to delete {file_path}. Reason: {e}")
else:
log.warning(f"The directory {folder} does not exist")
except Exception as e:
log.exception(f"Failed to process the directory {folder}. Reason: {e}")
return True
if ENV == "dev":
@router.get("/ef/{text}")
async def get_embeddings(request: Request, text: Optional[str] = "Hello World!"):
return {
"result": request.app.state.EMBEDDING_FUNCTION(
text, prefix=RAG_EMBEDDING_QUERY_PREFIX
)
}
class BatchProcessFilesForm(BaseModel):
files: List[FileModel]
collection_name: str
class BatchProcessFilesResult(BaseModel):
file_id: str
status: str
error: Optional[str] = None
class BatchProcessFilesResponse(BaseModel):
results: List[BatchProcessFilesResult]
errors: List[BatchProcessFilesResult]
@router.post("/process/files/batch")
def process_files_batch(
request: Request,
form_data: BatchProcessFilesForm,
user=Depends(get_verified_user),
) -> BatchProcessFilesResponse:
"""
Process a batch of files and save them to the vector database.
"""
results: List[BatchProcessFilesResult] = []
errors: List[BatchProcessFilesResult] = []
collection_name = form_data.collection_name
# Prepare all documents first
all_docs: List[Document] = []
for file in form_data.files:
try:
text_content = file.data.get("content", "")
docs: List[Document] = [
Document(
page_content=TextCleaner.clean_for_chunking(text_content.replace("
", "\n")),
metadata={
**file.meta,
"name": file.filename,
"created_by": file.user_id,
"file_id": file.id,
"source": file.filename,
},
)
]
hash = calculate_sha256_string(text_content or "")
Files.update_file_hash_by_id(file.id, hash)
Files.update_file_data_by_id(file.id, {"content": text_content})
all_docs.extend(docs)
results.append(BatchProcessFilesResult(file_id=file.id, status="prepared"))
except Exception as e:
log.error(f"process_files_batch: Error processing file {file.id}: {str(e)}")
errors.append(
BatchProcessFilesResult(file_id=file.id, status="failed", error=str(e))
)
# Save all documents in one batch
if all_docs:
try:
save_docs_to_vector_db(
request=request,
docs=all_docs,
collection_name=collection_name,
add=True,
user=user,
)
# Update all files with collection name
for result in results:
Files.update_file_metadata_by_id(
result.file_id, {"collection_name": collection_name}
)
result.status = "completed"
except Exception as e:
log.error(
f"process_files_batch: Error saving documents to vector DB: {str(e)}"
)
for result in results:
result.status = "failed"
errors.append(
BatchProcessFilesResult(file_id=result.file_id, error=str(e))
)
return BatchProcessFilesResponse(results=results, errors=errors)
def delete_file_from_vector_db(file_id: str) -> bool:
"""
Delete all vector embeddings for a specific file from the vector database.
This function works with any vector database (Pinecone, ChromaDB, etc.) and
handles the cleanup when a file is deleted from the chat.
Args:
file_id (str): The ID of the file to delete from vector database
Returns:
bool: True if deletion was successful, False otherwise
"""
try:
# Get the file record to access its hash and collection info
file = Files.get_file_by_id(file_id)
if not file:
return False
# Get the file hash for vector deletion
file_hash = file.hash
if not file_hash:
return False
# Try to get collection name from file metadata
collection_name = None
if hasattr(file, 'meta') and file.meta:
collection_name = file.meta.get('collection_name')
# If no collection name in metadata, try common patterns used by Open WebUI
if not collection_name:
# Open WebUI typically uses these patterns:
possible_collections = [
f"open-webui_file-{file_id}", # Most common pattern
f"file-{file_id}", # Alternative pattern
f"open-webui_{file_id}", # Another possible pattern
]
# Try each possible collection name
for possible_collection in possible_collections:
try:
if VECTOR_DB_CLIENT.has_collection(collection_name=possible_collection):
result = VECTOR_DB_CLIENT.delete(
collection_name=possible_collection,
filter={"hash": file_hash},
)
# Pinecone returns None on successful deletion
return True
except Exception as e:
continue
# If none of the standard patterns work, try searching through all collections
try:
deleted_count = 0
# Get all collections (this method varies by vector DB implementation)
if hasattr(VECTOR_DB_CLIENT, 'list_collections'):
try:
collections = VECTOR_DB_CLIENT.list_collections()
for collection in collections:
try:
if VECTOR_DB_CLIENT.has_collection(collection_name=collection):
result = VECTOR_DB_CLIENT.delete(
collection_name=collection,
filter={"hash": file_hash},
)
# Pinecone returns None on successful deletion, so any non-exception means success
deleted_count += 1
except Exception as e:
continue
except Exception as e:
pass
return deleted_count > 0
except Exception as e:
return False
# Delete from the specific collection found in metadata
if collection_name and VECTOR_DB_CLIENT.has_collection(collection_name=collection_name):
try:
result = VECTOR_DB_CLIENT.delete(
collection_name=collection_name,
filter={"hash": file_hash},
)
# Pinecone returns None on successful deletion, so we check for no exception
# rather than checking the return value
return True
except Exception as e:
return False
else:
return False
except Exception as e:
return False