import random import logging import sys from fastapi import Request from open_webui.models.users import UserModel from open_webui.models.models import Models from open_webui.utils.models import check_model_access from open_webui.env import SRC_LOG_LEVELS, GLOBAL_LOG_LEVEL, BYPASS_MODEL_ACCESS_CONTROL from open_webui.routers.openai import embeddings as openai_embeddings from open_webui.routers.ollama import embeddings as ollama_embeddings from open_webui.routers.ollama import GenerateEmbeddingsForm from open_webui.routers.pipelines import process_pipeline_inlet_filter from open_webui.utils.payload import convert_embedding_payload_openai_to_ollama from open_webui.utils.response import convert_embedding_response_ollama_to_openai logging.basicConfig(stream=sys.stdout, level=GLOBAL_LOG_LEVEL) log = logging.getLogger(__name__) log.setLevel(SRC_LOG_LEVELS["MAIN"]) async def generate_embeddings( request: Request, form_data: dict, user: UserModel, bypass_filter: bool = False, ): """ Dispatch and handle embeddings generation based on the model type (OpenAI, Ollama, Arena, pipeline, etc). Args: request (Request): The FastAPI request context. form_data (dict): The input data sent to the endpoint. user (UserModel): The authenticated user. bypass_filter (bool): If True, disables access filtering (default False). Returns: dict: The embeddings response, following OpenAI API compatibility. """ if BYPASS_MODEL_ACCESS_CONTROL: bypass_filter = True # Attach extra metadata from request.state if present if hasattr(request.state, "metadata"): if "metadata" not in form_data: form_data["metadata"] = request.state.metadata else: form_data["metadata"] = { **form_data["metadata"], **request.state.metadata, } # If "direct" flag present, use only that model if getattr(request.state, "direct", False) and hasattr(request.state, "model"): models = { request.state.model["id"]: request.state.model, } else: models = request.app.state.MODELS model_id = form_data.get("model") if model_id not in models: raise Exception("Model not found") model = models[model_id] # Access filtering if not getattr(request.state, "direct", False): if not bypass_filter and user.role == "user": check_model_access(user, model) # Arena "meta-model": select a submodel at random if model.get("owned_by") == "arena": model_ids = model.get("info", {}).get("meta", {}).get("model_ids") filter_mode = model.get("info", {}).get("meta", {}).get("filter_mode") if model_ids and filter_mode == "exclude": model_ids = [ m["id"] for m in list(models.values()) if m.get("owned_by") != "arena" and m["id"] not in model_ids ] if isinstance(model_ids, list) and model_ids: selected_model_id = random.choice(model_ids) else: model_ids = [ m["id"] for m in list(models.values()) if m.get("owned_by") != "arena" ] selected_model_id = random.choice(model_ids) inner_form = dict(form_data) inner_form["model"] = selected_model_id response = await generate_embeddings( request, inner_form, user, bypass_filter=True ) # Tag which concreted model was chosen if isinstance(response, dict): response = { **response, "selected_model_id": selected_model_id, } return response # Pipeline/Function models if model.get("pipe"): # The pipeline handler should provide OpenAI-compatible schema return await process_pipeline_inlet_filter(request, form_data, user, models) # Ollama backend if model.get("owned_by") == "ollama": ollama_payload = convert_embedding_payload_openai_to_ollama(form_data) form_obj = GenerateEmbeddingsForm(**ollama_payload) response = await ollama_embeddings( request=request, form_data=form_obj, user=user, ) return convert_embedding_response_ollama_to_openai(response) # Default: OpenAI or compatible backend return await openai_embeddings( request=request, form_data=form_data, user=user, )