from open_webui.utils.task import prompt_template, prompt_variables_template from open_webui.utils.misc import ( deep_update, add_or_update_system_message, ) from typing import Callable, Optional import json # inplace function: form_data is modified def apply_model_system_prompt_to_body( system: Optional[str], form_data: dict, metadata: Optional[dict] = None, user=None ) -> dict: if not system: return form_data # Metadata (WebUI Usage) if metadata: variables = metadata.get("variables", {}) if variables: system = prompt_variables_template(system, variables) # Legacy (API Usage) if user: template_params = { "user_name": user.name, "user_location": user.info.get("location") if user.info else None, } else: template_params = {} system = prompt_template(system, **template_params) form_data["messages"] = add_or_update_system_message( system, form_data.get("messages", []) ) return form_data # inplace function: form_data is modified def apply_model_params_to_body( params: dict, form_data: dict, mappings: dict[str, Callable] ) -> dict: if not params: return form_data for key, value in params.items(): if value is not None: if key in mappings: cast_func = mappings[key] if isinstance(cast_func, Callable): form_data[key] = cast_func(value) else: form_data[key] = value return form_data def remove_open_webui_params(params: dict) -> dict: """ Removes OpenWebUI specific parameters from the provided dictionary. Args: params (dict): The dictionary containing parameters. Returns: dict: The modified dictionary with OpenWebUI parameters removed. """ open_webui_params = { "stream_response": bool, "function_calling": str, "system": str, } for key in list(params.keys()): if key in open_webui_params: del params[key] return params # inplace function: form_data is modified def apply_model_params_to_body_openai(params: dict, form_data: dict) -> dict: params = remove_open_webui_params(params) custom_params = params.pop("custom_params", {}) if custom_params: # Attempt to parse custom_params if they are strings for key, value in custom_params.items(): if isinstance(value, str): try: # Attempt to parse the string as JSON custom_params[key] = json.loads(value) except json.JSONDecodeError: # If it fails, keep the original string pass # If there are custom parameters, we need to apply them first params = deep_update(params, custom_params) mappings = { "temperature": float, "top_p": float, "min_p": float, "max_tokens": int, "frequency_penalty": float, "presence_penalty": float, "reasoning_effort": str, "seed": lambda x: x, "stop": lambda x: [bytes(s, "utf-8").decode("unicode_escape") for s in x], "logit_bias": lambda x: x, "response_format": dict, } return apply_model_params_to_body(params, form_data, mappings) def apply_model_params_to_body_ollama(params: dict, form_data: dict) -> dict: params = remove_open_webui_params(params) custom_params = params.pop("custom_params", {}) if custom_params: # Attempt to parse custom_params if they are strings for key, value in custom_params.items(): if isinstance(value, str): try: # Attempt to parse the string as JSON custom_params[key] = json.loads(value) except json.JSONDecodeError: # If it fails, keep the original string pass # If there are custom parameters, we need to apply them first params = deep_update(params, custom_params) # Convert OpenAI parameter names to Ollama parameter names if needed. name_differences = { "max_tokens": "num_predict", } for key, value in name_differences.items(): if (param := params.get(key, None)) is not None: # Copy the parameter to new name then delete it, to prevent Ollama warning of invalid option provided params[value] = params[key] del params[key] # See https://github.com/ollama/ollama/blob/main/docs/api.md#request-8 mappings = { "temperature": float, "top_p": float, "seed": lambda x: x, "mirostat": int, "mirostat_eta": float, "mirostat_tau": float, "num_ctx": int, "num_batch": int, "num_keep": int, "num_predict": int, "repeat_last_n": int, "top_k": int, "min_p": float, "typical_p": float, "repeat_penalty": float, "presence_penalty": float, "frequency_penalty": float, "penalize_newline": bool, "stop": lambda x: [bytes(s, "utf-8").decode("unicode_escape") for s in x], "numa": bool, "num_gpu": int, "main_gpu": int, "low_vram": bool, "vocab_only": bool, "use_mmap": bool, "use_mlock": bool, "num_thread": int, } def parse_json(value: str) -> dict: """ Parses a JSON string into a dictionary, handling potential JSONDecodeError. """ try: return json.loads(value) except Exception as e: return value ollama_root_params = { "format": lambda x: parse_json(x), "keep_alive": lambda x: parse_json(x), "think": bool, } for key, value in ollama_root_params.items(): if (param := params.get(key, None)) is not None: # Copy the parameter to new name then delete it, to prevent Ollama warning of invalid option provided form_data[key] = value(param) del params[key] # Unlike OpenAI, Ollama does not support params directly in the body form_data["options"] = apply_model_params_to_body( params, (form_data.get("options", {}) or {}), mappings ) return form_data def convert_messages_openai_to_ollama(messages: list[dict]) -> list[dict]: ollama_messages = [] for message in messages: # Initialize the new message structure with the role new_message = {"role": message["role"]} content = message.get("content", []) tool_calls = message.get("tool_calls", None) tool_call_id = message.get("tool_call_id", None) # Check if the content is a string (just a simple message) if isinstance(content, str) and not tool_calls: # If the content is a string, it's pure text new_message["content"] = content # If message is a tool call, add the tool call id to the message if tool_call_id: new_message["tool_call_id"] = tool_call_id elif tool_calls: # If tool calls are present, add them to the message ollama_tool_calls = [] for tool_call in tool_calls: ollama_tool_call = { "index": tool_call.get("index", 0), "id": tool_call.get("id", None), "function": { "name": tool_call.get("function", {}).get("name", ""), "arguments": json.loads( tool_call.get("function", {}).get("arguments", {}) ), }, } ollama_tool_calls.append(ollama_tool_call) new_message["tool_calls"] = ollama_tool_calls # Put the content to empty string (Ollama requires an empty string for tool calls) new_message["content"] = "" else: # Otherwise, assume the content is a list of dicts, e.g., text followed by an image URL content_text = "" images = [] # Iterate through the list of content items for item in content: # Check if it's a text type if item.get("type") == "text": content_text += item.get("text", "") # Check if it's an image URL type elif item.get("type") == "image_url": img_url = item.get("image_url", {}).get("url", "") if img_url: # If the image url starts with data:, it's a base64 image and should be trimmed if img_url.startswith("data:"): img_url = img_url.split(",")[-1] images.append(img_url) # Add content text (if any) if content_text: new_message["content"] = content_text.strip() # Add images (if any) if images: new_message["images"] = images # Append the new formatted message to the result ollama_messages.append(new_message) return ollama_messages def convert_payload_openai_to_ollama(openai_payload: dict) -> dict: """ Converts a payload formatted for OpenAI's API to be compatible with Ollama's API endpoint for chat completions. Args: openai_payload (dict): The payload originally designed for OpenAI API usage. Returns: dict: A modified payload compatible with the Ollama API. """ ollama_payload = {} # Mapping basic model and message details ollama_payload["model"] = openai_payload.get("model") ollama_payload["messages"] = convert_messages_openai_to_ollama( openai_payload.get("messages") ) ollama_payload["stream"] = openai_payload.get("stream", False) if "tools" in openai_payload: ollama_payload["tools"] = openai_payload["tools"] # If there are advanced parameters in the payload, format them in Ollama's options field if openai_payload.get("options"): ollama_payload["options"] = openai_payload["options"] ollama_options = openai_payload["options"] def parse_json(value: str) -> dict: """ Parses a JSON string into a dictionary, handling potential JSONDecodeError. """ try: return json.loads(value) except Exception as e: return value ollama_root_params = { "format": lambda x: parse_json(x), "keep_alive": lambda x: parse_json(x), "think": bool, } # Ollama's options field can contain parameters that should be at the root level. for key, value in ollama_root_params.items(): if (param := ollama_options.get(key, None)) is not None: # Copy the parameter to new name then delete it, to prevent Ollama warning of invalid option provided ollama_payload[key] = value(param) del ollama_options[key] # Re-Mapping OpenAI's `max_tokens` -> Ollama's `num_predict` if "max_tokens" in ollama_options: ollama_options["num_predict"] = ollama_options["max_tokens"] del ollama_options["max_tokens"] # Ollama lacks a "system" prompt option. It has to be provided as a direct parameter, so we copy it down. # Comment: Not sure why this is needed, but we'll keep it for compatibility. if "system" in ollama_options: ollama_payload["system"] = ollama_options["system"] del ollama_options["system"] ollama_payload["options"] = ollama_options # If there is the "stop" parameter in the openai_payload, remap it to the ollama_payload.options if "stop" in openai_payload: ollama_options = ollama_payload.get("options", {}) ollama_options["stop"] = openai_payload.get("stop") ollama_payload["options"] = ollama_options if "metadata" in openai_payload: ollama_payload["metadata"] = openai_payload["metadata"] if "response_format" in openai_payload: response_format = openai_payload["response_format"] format_type = response_format.get("type", None) schema = response_format.get(format_type, None) if schema: format = schema.get("schema", None) ollama_payload["format"] = format return ollama_payload def convert_embedding_payload_openai_to_ollama(openai_payload: dict) -> dict: """ Convert an embeddings request payload from OpenAI format to Ollama format. Args: openai_payload (dict): The original payload designed for OpenAI API usage. Returns: dict: A payload compatible with the Ollama API embeddings endpoint. """ ollama_payload = {"model": openai_payload.get("model")} input_value = openai_payload.get("input") # Ollama expects 'input' as a list, and 'prompt' as a single string. if isinstance(input_value, list): ollama_payload["input"] = input_value ollama_payload["prompt"] = "\n".join(str(x) for x in input_value) else: ollama_payload["input"] = [input_value] ollama_payload["prompt"] = str(input_value) # Optionally forward other fields if present for optional_key in ("options", "truncate", "keep_alive"): if optional_key in openai_payload: ollama_payload[optional_key] = openai_payload[optional_key] return ollama_payload